There's a pattern!

2016 ! 2015 ! + 2014 ! + 2015 ! 2014 ! + 2013 ! + 2014 ! 2013 ! + 2012 ! + 2013 ! 2015 ! + 2014 ! + . . . + 2 ! 1 ! + 0 ! \frac { 2016! }{ 2015!+2014! } +\frac { 2015! }{ 2014!+2013! } +\frac { 2014! }{ 2013!+2012! } +\frac { 2013! }{ 2015!+2014! } +...+\frac { 2! }{ 1!+0! }

What is the sum of the digits of the sum above?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Efren Medallo
May 1, 2015

A fraction of this form

n ! ( n 1 ) ! + ( n 2 ) ! \frac { n! }{ (n-1)!+ (n-2)! }

simplifies to

n ! ( n 1 ) ( n 2 ) ! + ( n 2 ) ! \frac {n!} { (n-1)(n-2)! + (n-2)!}

n ! ( n 1 + 1 ) ( n 2 ) ! \frac {n!} { (n-1+1)(n-2)!}

n ! n ( n 2 ) ! \frac {n!} {n (n-2)!}

= n 1 \large = \boxed{n-1}

Hence, the lengthy expression simplifies to

2015 + 2014 + 2013 + . . . 3 + 2 + 1 \large 2015 + 2014 + 2013 + ... 3 + 2 + 1

This sum is equal to 2015 2 × 2016 \frac {2015}{2} \times 2016

= 2031120 \large = \boxed {2031120}

And the sum of its digits amount to 9 \large \large \boxed {9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...