There's a quartic root in my limit

Calculus Level 4

lim x 0 1 x 2 1 4 x 2 + x 4 4 x 4 = ? \lim_{x\to 0 } \dfrac{ 1 -x^2 -\sqrt[4]{1-4x^2 + x^4}}{x^4} = \, ?


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andrea Virgillito
Feb 14, 2017

We have that: 1 4 x 2 + x 4 4 = 1 + 1 4 ( 4 x 2 + x 4 ) + 1 4 ( 1 4 1 ) 2 ! ( 4 x 2 + x 4 ) 2 + 1 4 ( 1 4 1 ) ( 1 4 2 ) 3 ! ( 4 x 2 + x 4 ) 3 + 1 4 ( 1 4 1 ) ( 1 4 2 ) ( 1 4 3 ) 4 ! ( 4 x 2 + x 4 ) 4 + o ( x 4 ) = 1 x 2 5 4 x 4 + o ( x 4 ) \sqrt[4]{1-4x^2+x^4}= 1+\frac{1}{4}(-4x^2+x^4)+\frac{\frac{1}{4}(\frac{1}{4}-1)}{2!}(-4x^2+x^4)^2+\frac{\frac{1}{4}(\frac{1}{4}-1)(\frac{1}{4}-2)}{3!}(-4x^2+x^4)^3+ \frac{\frac{1}{4}(\frac{1}{4}-1)(\frac{1}{4}-2)(\frac{1}{4}-3)}{4!}(-4x^2+x^4)^4+o(x^4)= 1-x^2-\frac{5}{4}x^4+o(x^4)

Thus: lim x 0 1 x 2 1 4 x 2 + x 4 4 x 4 = lim x 0 1 x 2 ( 1 x 2 5 4 x 4 ) + o ( x 4 ) x 4 = 5 4 = 1.25 \lim_{x\to 0 } \dfrac{ 1 -x^2 -\sqrt[4]{1-4x^2 + x^4}}{x^4} = \lim_{x\to 0 } \dfrac{ 1 -x^2 -(1-x^2-\frac{5}{4}x^4)+o(x^4)}{x^4} =\frac{5}{4}=1.25

Not an elegant method.

沂泓 纪 - 4 years, 3 months ago

Log in to reply

I know there are some methods more elegant but I have chosen to write that just because I really like Taylor :)

Andrea Virgillito - 4 years, 3 months ago

Log in to reply

Lol,I see.

沂泓 纪 - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...