There's Circles Everywhere!

Geometry Level pending

In the diagram above, A B C D ABCD is a square with a side length of 20 20 with four inscribed quarter circles as shown above.

If the area A A of the yellow region above can be represented as A = ( a b b ) b ( c + π d d ) A = (a * b^b)^b(c + \dfrac{\pi}{d} - \sqrt{d}) , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 7, 2019

C 1 : ( x 20 ) 2 + y 2 = 400 C_{1}: (x - 20)^2 + y^2 = 400

C 2 : x 2 + y 2 = 400 C_{2}: x^2 + y^2 =400

C 3 : ( x 20 ) 2 + ( y 20 ) 2 = 400 C_{3}: (x - 20)^2 + (y - 20)^2 = 400

C 4 : x 2 + ( y 20 ) 2 = 400 C_{4}: x^2 + (y - 20)^2 = 400

We want the intersection of C 1 C_{1} and C 2 C_{2} , C 3 C_{3} and C 4 C_{4} and C 1 C_{1} and C 3 C_{3} .

Expanding C 1 C_{1} and adding C 1 C_{1} and C 2 C_{2} we obtain P C 1 C 2 : ( 10 , 10 3 ) P_{C1C2} : (10,10\sqrt{3})

Expanding C 3 C_{3} and C 4 C_{4} and adding we obtain P C 3 C 4 : ( 10 , 10 3 + 20 ) P_{C3C4} : (10,-10\sqrt{3} + 20)

Expanding C 1 C_{1} and C 3 C_{3} and adding we obtain P C 1 C 3 : ( 10 3 + 20 ) , 10 P_{C1C3} : (-10\sqrt{3} + 20),10

For C 1 C_{1} we have y 2 = 400 ( x 20 ) 2 y_{2} = \sqrt{400 - (x - 20)^2}

For C 3 C_{3} we have y 1 = 20 400 ( x 20 ) 2 y_{1} = 20 - \sqrt{400 - (x - 20)^2}

A = 2 R 1 = 2 10 3 + 20 10 ( 2 400 ( x 20 ) 2 20 ) d x \implies A = 2 * R_{1} = 2\displaystyle\int_{-10\sqrt{3} + 20}^{10} (2\sqrt{400 - (x - 20)^2} - 20) dx

Letting x 20 = 20 sin ( θ ) d x = 20 cos ( θ ) x - 20 = 20\sin(\theta) \implies dx = 20\cos(\theta) \implies

A = 2 ( π 3 π 6 ( 400 ( 1 + cos ( 2 θ ) ) d θ A = 2(\displaystyle\int_{-\dfrac{\pi}{3}}^{-\dfrac{\pi}{6}} (400(1 + \cos(2\theta)) d\theta - 20 x 10 3 + 20 10 ) = 20x|_{-10\sqrt{3} + 20}^{10}) =

2 ( 400 ( θ + 1 2 sin ( 2 θ ) ) π 3 π 6 ) 20 x 10 3 + 20 10 ) 2(400(\theta + \dfrac{1}{2}\sin(2\theta))|_{-\frac{\pi}{3}}^{-\frac{\pi}{6}}) - 20x|_{-10\sqrt{3} + 20}^{10})

= 2 ( 200 π 3 + 200 200 3 ) = 400 ( 1 + π 3 3 ) = = 2(\dfrac{200\pi}{3} + 200 -200\sqrt{3}) = 400(1 + \dfrac{\pi}{3} - \sqrt{3}) =

( 5 2 2 ) 2 ( 1 + π 3 3 ) = ( a b b ) b ( c + π d d ) (5 * 2^2)^2( 1 + \dfrac{\pi}{3} - \sqrt{3}) = (a * b^b)^b(c + \dfrac{\pi}{d} - \sqrt{d}) \implies a + b + c + d = 11 a + b + c + d = \boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...