There’s Only One Inradius For Sixteen Triangles? (Take All)

Geometry Level 5

If Only Sixteen Triangles exists that are formed by primitive Pythagorean triple sides with a certain inradius r r such that 1 r 3000 1 \leq r \leq 3000 . Find sum of this r r .

Example. Primitive Pythagorean triple sides

N a b c
1 2312 1336335 1336337
2 2328 150535 150553
3 2360 55671 55721
4 2408 29535 29633
5 2552 13335 13577
6 2760 8239 8689
7 3192 5335 6217
8 4488 3535 5713
9 4760 3399 5849
10 8360 2751 8801
11 14168 2535 14393
12 24360 2431 24481
13 56760 2359 56809
14 109032 2335 109057
15 298760 2319 298769

||16||2670360||2311||2670361|| .

for r = 1155 r=1155 .

Inspriration


The answer is 18705.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 8, 2020

A primitive Pythagorean triple is formed by sides p 2 q 2 p^2-q^2 , 2 p q 2pq , p 2 + q 2 p^2+q^2 where p , q p,q are coprime positive integers of opposite parities. The area of the associated right-angled triangle is p q ( p 2 q 2 ) pq(p^2-q^2) , and the semiperimeter is p ( p + q ) p(p+q) , so that the inradius is r = q ( p q ) r = q(p-q) . Note that p q p-q has to be odd, although q q can be even. Thus r r must have exactly 16 16 odd factors that can be equal to q q . Since p q p-q and q q are coprime, it follows that r r has exactly 4 4 odd prime factors.

Now add the requirement that 1 r 3000 1 \le r \le 3000 . Since 3 2 × 5 × 7 × 11 > 3000 3^2 \times 5 \times 7 \times 11 > 3000 , it follows that r r has no repeated odd prime factors. Since 4 × 3 × 5 × 7 × 11 > 3000 4 \times 3 \times 5 \times 7 \times 11 > 3000 , r r can contain at most one factor of 2 2 . Thus the nine possible values of r r are 1155 = 3 × 5 × 7 × 11 2310 = 2 × 3 × 5 × 7 × 11 1365 = 3 × 5 × 7 × 13 2730 = 2 × 3 × 5 × 7 × 13 1785 = 3 × 5 × 7 × 17 1995 = 3 × 5 × 7 × 19 2415 = 3 × 5 × 7 × 23 2145 = 3 × 5 × 11 × 13 2805 = 3 × 5 × 11 × 17 \begin{array}{rclcrclcrcl} 1155 & = & 3 \times 5 \times 7 \times 11 & \hspace{1cm} & 2310 & = & 2 \times 3 \times 5 \times 7 \times 11 & \hspace{1cm} & 1365 & = & 3 \times 5 \times 7 \times 13 \\ 2730 & = & 2 \times3 \times 5 \times 7 \times 13 & & 1785 & = & 3 \times 5 \times 7 \times 17 & & 1995 & = & 3 \times 5 \times 7 \times 19 \\ 2415 & = & 3 \times 5 \times 7 \times 23 & & 2145 & = & 3 \times 5\times 11 \times 13 & & 2805 & = & 3 \times 5 \times 11 \times 17 \end{array} and the sum of these numbers is 18705 \boxed{18705} .

K T
Dec 9, 2020

Draw a rectangular triangle A B C ABC with its right angle at C C and opposite sides a , b , c a,b,c . Draw its incircle with centre M M and radius r r , Let it touch the sides B C , C A BC, CA and A B AB in D , E D, E and F F respectively. Notice that A M E A M F AME \cong AMF and B M D B M F BMD \cong BMF . Therefore B F = B D = a r , A F = A E = b r , A B = c = a + b 2 r BF=BD=a-r, AF=AE=b-r, AB=c=a+b-2r .

So
a 2 + b 2 = c 2 = ( a + b 2 r ) 2 a^2+b^2=c^2=(a+b-2r)^2 0 = 2 a b 4 r ( a + b ) + 4 r 2 0=2ab-4r(a+b)+4r^2 b = 2 r ( a r ) a 2 r b=\frac{2r(a-r)}{a-2r}

Fom c = a + b 2 r c=a+b-2r it was already clear that 2r had to be an integer, from b ( a 2 r ) = 2 r ( a r ) b(a-2r)=2r(a-r) we now see that r itself has to be an integer.

If we want a b a \le b , we can set bounds to a: 2 r < a ( 2 + 2 ) r 2r \lt a \le (2+\sqrt{2})r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import math

def PrimitiveTriplesForRadius(r):
    count=0
    for a in range(2*r+1, 1+math.floor((math.sqrt(2)+2.0)*r)):
        if 2*r*(a-r) % (a-2*r) == 0:
            b = 2*r*(a-r) // (a-2*r)
            c = a+b-2*r
            if math.gcd(a, math.gcd(b,c)) == 1:
                count += 1
    return count

sum = 0; r_16 = []
for r in range(1, 3001):
    if PrimitiveTriplesForRadius(r) == 16:
        sum += r
        r_16.append(r)
print (sum, r_16)

output:

1
18705 [1155, 1365, 1785, 1995, 2145, 2310, 2415, 2730, 2805]

Ummmmm..........

Ash Ketchup - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...