These are not the factorials you are looking for...

Algebra Level 4

Given that n $ H ( n ) = ( n ! ) n + t n\$ \cdot H(n) = (n!)^{n+t} where t t is a positive real number less than 12.345 12.345 , find ( 3 t ) ! (3t)! .

Notations:

  • n ! n! denotes the factorial which can be written as n ( n 1 ) ( n 2 ) 3 2 1 n(n-1)(n-2)\dots 3 \cdot 2 \cdot 1 for positive integer n n including 0 0 where 0 ! = 1 0! = 1 . It can also be written as 0 t n e t d t \displaystyle \int_{0}^{\infty} t^n e^{-t} \, dt for complex n n that are not negative integers. For more information, go here .
  • n $ n\$ denotes the super factorial which can be written as n ! ( n 1 ) ! ( n 2 ) ! 3 ! 2 ! 1 ! n! (n-1)! (n-2)! \dots 3! 2! 1! for positive integer n n including 0 0 where 0 $ = 1 0\$ = 1 .
  • H ( n ) H(n) denotes the hyper factorial which can be written as n n ( n 1 ) n 1 ( n 2 ) n 2 3 3 2 2 1 1 n^n (n-1)^{n-1} (n-2)^{n-2} \dots 3^3 2^2 1^1 for positive integer n n including 0 0 where H ( 0 ) = 1 H(0) = 1 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

James Watson
Aug 24, 2020

First of all, we can write the super factorial in a different way. When we multiply n ! n! by ( n 1 ) ! (n-1)! we get: n ( n 1 ) ( n 2 ) 3 2 1 ( n 1 ) ( n 2 ) 3 2 1 = n ( n 1 ) ( n 1 ) ( n 2 ) ( n 2 ) 3 3 2 2 1 1 = n ( n 1 ) 2 ( n 2 ) 2 3 2 2 2 1 2 \begin{aligned} n(n-1)(n-2)\dots 3 \cdot 2 \cdot 1 \cdot (n-1)(n-2)\dots 3 \cdot 2 \cdot 1 &= n(n-1)(n-1)(n-2)(n-2) \dots 3\cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \\ &= n(n-1)^2 (n-2)^2 \dots 3^2 \cdot 2^2 \cdot 1^2 \end{aligned} If we do the same thing when multiplying ( n 2 ) ! (n-2)! , we start to see a pattern appearing: n ( n 1 ) 2 ( n 2 ) 2 3 2 2 2 1 2 ( n 2 ) ( n 3 ) 3 2 1 = n ( n 1 ) 2 ( n 2 ) 2 ( n 2 ) ( n 3 ) 2 ( n 3 ) 3 2 3 2 2 2 1 2 1 = n ( n 1 ) 2 ( n 2 ) 3 ( n 3 ) 3 3 3 2 3 1 3 \begin{aligned} n(n-1)^2 (n-2)^2 \dots 3^2 \cdot 2^2 \cdot 1^2 \cdot (n-2)(n-3)\dots 3 \cdot 2 \cdot 1 &= n(n-1)^2(n-2)^2(n-2)(n-3)^2(n-3)\dots 3^2 \cdot 3 \cdot 2^2 \cdot 2 \cdot 1^2 \cdot 1 \\ &= n(n-1)^2(n-2)^3(n-3)^3 \dots 3^3 \cdot 2^3 \cdot 1^3 \end{aligned} Using this pattern, we can see that n ! ( n 1 ) ! ( n 2 ) ! 3 ! 2 ! 1 ! n! (n-1)! (n-2)! \dots 3! 2! 1! can be written as n ( n 1 ) 2 ( n 2 ) 3 3 n 2 2 n 1 1 n \boxed{n(n-1)^2(n-2)^3 \dots 3^{n-2} \cdot 2^{n-1} \cdot 1^n } Now when we multiply this with n n ( n 1 ) n 1 ( n 2 ) n 2 3 3 2 2 1 1 n^n (n-1)^{n-1} (n-2)^{n-2} \dots 3^3 2^2 1^1 , which is the hyper factorial, we can see that it is the same as n $ H ( n ) = n n n ( n 1 ) 2 ( n 1 ) n 1 ( n 2 ) 3 ( n 2 ) n 2 3 n 2 3 3 2 n 1 2 2 1 n 1 = n n + 1 ( n 1 ) n + 1 ( n 2 ) n + 1 3 n + 1 2 n + 1 1 n + 1 = ( n ( n 1 ) ( n 2 ) 3 2 1 ) n + 1 = ( n ! ) n + 1 \begin{aligned} n\$ \cdot H(n) &= n \cdot n^n \cdot (n-1)^2(n-1)^{n-1}(n-2)^3 (n-2)^{n-2} \dots 3^{n-2} \cdot 3^3 \cdot 2^{n-1} \cdot 2^2 \cdot 1^{n} \cdot 1 \\ &= n^{n+1}(n-1)^{n+1}(n-2)^{n+1} \dots 3^{n+1} \cdot 2^{n+1} \cdot 1^{n+1} \\ &= (n(n-1)(n-2)\dots 3 \cdot 2 \cdot 1)^{n+1} \\ &= (n!)^{n+\blue{1}} \end{aligned} We can now see that t = 1 t = \blue{1} and the answer is ( 3 ( 1 ) ) ! = 6 (3(\blue{1}))! = \green{\boxed{6}}

There’s a problem in your solution. When n = 1 n=1 , n + 1 n+1 and n + t n+t may not equal.

Edward Christian - 9 months, 3 weeks ago

Log in to reply

have replied to the report. I hope i explained it well enough for you :)

James Watson - 9 months, 3 weeks ago
Edward Christian
Aug 24, 2020

According to the definition, we can substitute n $ = n ! ( n 1 ) ! ( n 2 ) ! 3 ! 2 ! 1 ! n \$=n! (n-1)! (n-2)! \cdots 3! 2! 1! , n ! ( n 1 ) ! ( n 2 ) ! 3 ! 2 ! 1 ! H ( n ) = n n + t ( n 1 ) n + t ( n 2 ) n + t 3 n + t 2 n + t 1 n + t n! (n-1)! (n-2)! \cdots 3! 2! 1! \cdot H(n)=n^{n+t} (n-1)^{n+t} (n-2)^{n+t} \cdots 3^{n+t} 2^{n+t} 1^{n+t} Now divide H ( n ) = n n ( n 1 ) n 1 ( n 2 ) n 2 3 3 2 2 1 1 H(n)=n^n (n-1)^{n-1} (n-2)^{n-2} \cdots 3^3 2^2 1^1 , we can get n ! ( n 1 ) ! ( n 2 ) ! 3 ! 2 ! 1 ! = n t ( n 1 ) t + 1 ( n 2 ) t + 2 3 t + n 3 2 t + n 2 1 t + n 1 n! (n-1)! (n-2)! \cdots 3! 2! 1!=n^t (n-1)^{t+1} (n-2)^{t+2} \cdots 3^{t+n-3} 2^{t+n-2} 1^{t+n-1} When dividing both side by n ! = n ( n 1 ) ( n 2 ) 3 2 1 n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 , ( n 1 ) ! ( n 2 ) ! ( n 3 ) ! 3 ! 2 ! 1 ! = n t 1 ( n 1 ) t ( n 2 ) t + 1 3 t + n 4 2 t + n 3 1 t + n 2 (n-1)! (n-2)! (n-3)! \cdots 3! 2! 1!=n^{\blue{t-1}} (n-1)^t (n-2)^{t+1} \cdots 3^{t+n-4} 2^{t+n-3} 1^{t+n-2} Divide both side by ( n 1 ) ! = ( n 1 ) ( n 2 ) ( n 3 ) 3 2 1 (n-1)! =(n-1) (n-2) (n-3) \cdots 3 \cdot 2 \cdot 1 , ( n 2 ) ! ( n 3 ) ! ( n 4 ) ! 3 ! 2 ! 1 ! = n t 1 ( n 1 ) t 1 ( n 2 ) t 3 t + n 5 2 t + n 4 1 t + n 3 (n-2)! (n-3)! (n-4)! \cdots 3! 2! 1!=n^{\blue{t-1}} (n-1)^{\blue{t-1}} (n-2)^t \cdots 3^{t+n-5} 2^{t+n-4} 1^{t+n-3} When dividing ( n 2 ) ! = ( n 2 ) ( n 3 ) ( n 4 ) 3 2 1 (n-2)! = (n-2) (n-3) (n-4) \cdots 3 \cdot 2 \cdot 1 , ( n 3 ) ! ( n 4 ) ! ( n 5 ) ! 3 ! 2 ! 1 ! = n t 1 ( n 1 ) t 1 ( n 2 ) t 1 ( n 3 ) t 3 t + n 6 2 t + n 5 1 t + n 4 (n-3)! (n-4)! (n-5)! \cdots 3! 2! 1!=n^{\blue{t-1}} (n-1)^{\blue{t-1}} (n-2)^{\blue{t-1}} (n-3)^t \cdots 3^{t+n-6} 2^{t+n-5} 1^{t+n-4} \cdots \cdots \cdots \cdots Using this pattern, we divide both side by ( n a ) ! (n-a)! continuously, n t 1 ( n 1 ) t 1 ( n 2 ) t 1 3 t 1 2 t 1 1 t 1 = 1 n^{t-1} (n-1)^{t-1} (n-2)^{t-1} \cdots 3^{t-1} 2^{t-1} 1^{t-1} =1 ( n ! ) t 1 = 1 \boxed{\therefore (n!)^{t-1}=1} When a b = 1 a^b=1 , there’re two cases: a = 1 , b = any real number; or a = any non-zero real number, b = 0 a=1, b=\text{any real number; or }a=\text{any non-zero real number, } b=0 . To let t t satisfy all values of n ! n! , we choose Case II \text{Case II} . So t 1 = 0 t-1=0 , obviously t = 1 t=1 . The answer is ( 3 t ) ! = ( 3 ( 1 ) ) ! = 6 (3t)!=(3(1))!=\boxed{6} .

@James Watson Now you see why I thought n = 1 n=1 . Check this out!

Edward Christian - 9 months, 3 weeks ago

Log in to reply

i see. interesting way of solving this! i like it

James Watson - 9 months, 3 weeks ago
Chew-Seong Cheong
Aug 24, 2020

Method 1: Proof by Induction

An easy way to solve this is using proof by induction . Let f ( n ) = n $ H ( n ) f(n) = n\$ \cdot H(n) . Then f ( 0 ) = 1 = ( 0 ! ) 0 + 1 f(0) = 1 = (0!)^{0+1} , f ( 1 ) = 1 = ( 1 ! ) 1 + 1 f(1) = 1 = (1!)^{1+1} , f ( 2 ) = 8 = ( 2 ! ) 2 + 1 f(2) = 8 = (2!)^{2+1} , f ( 3 ) = 1296 = ( 3 ! ) 3 + 1 f(3) = 1296 = (3!)^{3+1} , .... We note that n $ H ( n ) = ( n ! ) n + 1 n\$ \cdot H(n) = (n!)^{n+1} is true for the first few n n . Assuming that it is true for n n , then

( n + 1 ) $ H ( n + 1 ) = ( n + 1 ) ! n $ ( n + 1 ) n + 1 H ( n ) = ( n + 1 ) ! ( n + 1 ) n + 1 ( n ! ) n + 1 = ( ( n + 1 ) ! ) n + 2 \begin{aligned} (n+1)\$ \cdot H(n+1) & = (n+1)! \blue{n\$} (n+1)^{n+1} \blue{H(n)} = (n+1)! (n+1)^{n+1} \blue{(n!)^{n+1}} = ((n+1)!)^{n+2} \end{aligned}

The claim is also true for n + 1 n+1 . Therefore n $ H ( n ) = ( n ! ) n + 1 n\$ \cdot H(n) = (n!)^{n+1} is true for n 0 n \ge 0 and ( 3 t ) ! = 3 ! = 6 (3t)! = 3! = \boxed 6 .


Method 2: Factorizing H ( n ) H(n)

H ( n ) = 1 1 2 2 3 3 ( n 2 ) n 2 ( n 1 ) n 1 n n = n ! ( 2 1 3 2 4 3 ( n 2 ) n 3 ( n 1 ) n 2 n n 1 ) = ( n ! ) 2 ( 3 1 4 2 5 3 ( n 2 ) n 4 ( n 1 ) n 3 n n 2 ) 1 ! = ( n ! ) 3 ( 4 1 5 2 6 3 ( n 2 ) n 5 ( n 1 ) n 4 n n 3 ) 1 ! 2 ! = ( n ! ) 4 ( 5 1 6 2 7 3 ( n 2 ) n 6 ( n 1 ) n 5 n n 4 ) 1 ! 2 ! 3 ! = = ( n ! ) n 1 ! 2 ! 3 ! ( n 1 ) ! = ( n ! ) n ( n 1 ) $ n $ H ( n ) = n $ ( n ! ) n ( n 1 ) $ = n ! ( n ! ) n = ( n ! ) n + 1 \begin{aligned} H(n) & = 1^1 \cdot 2^2 \cdot 3^3 \cdots (n-2)^{n-2} (n-1)^{n-1} n^n \\ & = n! \left(\cdot 2^1 \cdot 3^2 \cdot 4^3 \cdots (n-2)^{n-3} (n-1)^{n-2} n^{n-1} \right) \\ & = \frac {(n!)^2 \left(\cdot 3^1 \cdot 4^2 \cdot 5^3 \cdots (n-2)^{n-4} (n-1)^{n-3} n^{n-2} \right)}{1!} \\ & = \frac {(n!)^3 \left(\cdot 4^1 \cdot 5^2 \cdot 6^3 \cdots (n-2)^{n-5} (n-1)^{n-4} n^{n-3} \right)}{1! \cdot 2!} \\ & = \frac {(n!)^4 \left(\cdot 5^1 \cdot 6^2 \cdot 7^3 \cdots (n-2)^{n-6} (n-1)^{n-5} n^{n-4} \right)}{1! \cdot 2! \cdot 3!} \\ & = \cdots \\ & = \frac {(n!)^n}{1! \cdot 2! \cdot 3! \cdots (n-1)!} = \frac {(n!)^n}{(n-1)\$} \\ \implies n\$ H(n) & = \frac {n\$ (n!)^n}{(n-1)\$} = n! \cdot (n!)^n = (n!)^{n+1} \end{aligned}

Therefore ( 3 t ) ! = 3 ! = 6 (3t)! = 3! = \boxed 6 .

In your first method, isn't it true for n 0 n \geq 0 because ( 0 ! ) 0 + 1 = 1 1 = 1 (0!)^{0+1} = 1^1 = 1 ? Since we have 0 $ = 1 0\$ = 1 and H ( 0 ) = 1 H(0) = 1 , we can see that 0 $ H ( 0 ) = 1 1 = 1 0\$ \cdot H(0) = 1 \cdot 1 = 1 and therefore 0 0 is a valid input for n n as well

James Watson - 9 months, 3 weeks ago

Log in to reply

Yes, it is. I just follow your definitions of n ! = n ( n 1 ) 1 n!=n(n-1)\cdots 1 , n $ = n ! ( n 1 ) ! 1 ! n\$ = n!(n-1)!\cdots 1! , and H ( n ) = n n ( n 1 ) n 1 1 1 H(n) = n^n (n-1)^{n-1} \cdots 1^1 . Anyway you did also mention 0 ! 0! , 0 $ 0\$ , and H ( 0 ) H(0) . I will just change it.

Chew-Seong Cheong - 9 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...