These are some odd digits

Define f ( N , k ) f(N,k) as the k k th smallest natural number x > 1 x>1 such that all of the digits of N x Nx is odd. For example, f ( 5 , 1 ) = 3 f(5,1)=3 , f ( 5 , 2 ) = 7 f(5,2)=7 , f ( 7 , 1 ) = 5 f(7,1)=5 and f ( 13 , 3 ) = 9 f(13,3)=9 .

Find the value of n = 1 10 f ( 999 999 991 , n ) \displaystyle \sum_{n=1}^{10} f(999~999~991,n) .


The answer is 1111112850.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jul 19, 2017

Let f ( 999 999 991 , n ) = x f(999~999~991,~n)=x .

We know intuitively that f ( 999 999 991 , n ) f(999~999~991,~n) must be an odd number.

Then, we need to do a little bit of trick.

999 999 991 x = 1 000 000 000 x 9 x = 1 000 000 000 ( x 1 ) + 1 000 000 000 9 x \begin{aligned} 999~999~991x &=1~000~000~000x-9x \\ & = 1~000~000~000(x-1)+1~000~000~000-9x \end{aligned}

Suppose that x 111 111 111. x\le 111~111~111.

0 < 1 000 000 000 9 x < 1 000 000 000 0<1~000~000~000-9x<1~000~000~000 and therefore 1 000 000 000 9 x 1~000~000~000-9x cannot have any effect on the digits over billion.

And since x 1 x-1 is an even number, the billionth digit must be an even number. This doesn't make sense, therefore x 111 111 113. x\ge 111~111~113.


Then let's assume that 111 111 113 x 222 222 222. 111~111~113\le x \le 222~222~222.

Note that

1 × 9 = 0 9 ; 3 × 9 = 2 7 ; 5 × 9 = 4 5 ; 7 × 9 = 6 3 ; 9 × 9 = 8 1 . 1\times9={\color{#D61F06}{0}}{\color{#3D99F6}{9}}; \\ 3\times9={\color{#D61F06}{2}}{\color{#3D99F6}{7}}; \\ 5\times9={\color{#D61F06}{4}}{\color{#3D99F6}{5}}; \\ 7\times9={\color{#D61F06}{6}}{\color{#3D99F6}{3}}; \\ 9\times9={\color{#D61F06}{8}}{\color{#3D99F6}{1}}.

And therefore if the last two digits of x x is odd, the last two digits of 9 x 9x is also odd.

But then note that (yes there're a lot of things to note, sorry.)

Note A. 999 999 991 x = 1 000 000 000 x 9 x = 1 000 000 000 ( x 2 ) + 2 000 000 000 9 x \boxed{\text{Note A.}} \\ \\ \begin{aligned} 999~999~991x &=1~000~000~000x-9x \\ & = 1~000~000~000(x-2) + 2~000~000~000 - 9x \end{aligned}

So the last 9 9 digits of 999 999 991 x 999~999~991x is the same as 2 000 000 000 9 x 2~000~000~000-9x , which is larger than 0 0 but also smaller than 1 000 000 000 1~000~000~000 . Then again, no effects on the digits over billionth.

Also, if the last two digits of 9 x 9x is odd, the tenth digit of 2 000 000 000 9 x 2~000~000~000-9x must be even.

Therefore, the tenth digit of x x cannot be odd. (since the unit's digit is always odd.)


Then by the information we know, the smallest possible that x x can be is 111 111 121. 111~111~121.

But then by <Note A>, we also know that x 2 should only have odd digits. {\color{#D61F06}{x-2~\text{should only have odd digits.}}}

Therefore we can say that x x follows the form [ even number ] 1 . {\color{#D61F06}{\overline{*******[\text{even number}]1}}}.

Possible values for x x are: 111 111 121 , 111 111 141 , 111 111 161 , 111 111 181 . \boxed{111~111~121,~111~111~141,~111~111~161,~111~111~181}.

We can also see that 111 111 201 \boxed{111~111~201} maybe would satisfy the condition.


What about 111 111 321 111~111~321 then?

Sadly it can't go into the answers' team.

Why, you may ask.

Calculate 1321 × 9 1321\times 9 and you get 1 1 889 1\boxed{1}889 , and that 1 \boxed{1} would leave the thousandth digit of 9 x 9x as an odd number, which shouldn't happen, because then 2000000000 9 x 2 000 000 000-9x would have its thousandth digit as an even number.

But from 1341 × 9 1341\times 9 , things get better again and we get 1 2 069. 1\boxed{2}069.

Then possible values for x x in this section are: 111 111 341 , 111 111 361 , 111 111 381 , 111 111 401 . \boxed{111~111~341,~111~111~361,~111~111~381,~111~111~401}.


Do the same with above and we see that 111 111 521 111~111~521 and 111 111 541 111~111~541 are impossible.

Then possible values for x x in this section are: 111 111 561 , 111 111 581 , 111 111 601 . \boxed{111~111~561,~111~111~581,~111~111~601}.


From above, I only guessed, using the terms "possible values" and "maybe would satisfy".

But they really do satisfy the conditions. Reflect on and enjoy these beautiful numbers.

999 999 991 × 111 111 121 = 111 111 119 999 999 911 999 999 991 × 111 111 141 = 111 111 139 999 999 731 999 999 991 × 111 111 161 = 111 111 159 999 999 551 999 999 991 × 111 111 181 = 111 111 179 999 999 371 999 999 991 × 111 111 201 = 111 111 199 999 999 191 999 999 991 × 111 111 341 = 111 111 339 999 997 931 999 999 991 × 111 111 361 = 111 111 359 999 997 751 999 999 991 × 111 111 381 = 111 111 379 999 997 571 999 999 991 × 111 111 401 = 111 111 399 999 997 391 999 999 991 × 111 111 561 = 111 111 559 999 995 951 999 999 991 × 111 111 581 = 111 111 579 999 995 771 999 999 991 × 111 111 601 = 111 111 599 999 995 591 \begin{aligned} 999~999~991\times111~111~121 &= 111~111~119~999~999~911 \\ 999~999~991\times111~111~141 &= 111~111~139~999~999~731 \\ 999~999~991\times111~111~161 &= 111~111~159~999~999~551 \\ 999~999~991\times111~111~181 &= 111~111~179~999~999~371 \\ 999~999~991\times111~111~201 &= 111~111~199~999~999~191 \\ \\ 999~999~991\times111~111~341 &= 111~111~339~999~997~931 \\ 999~999~991\times111~111~361 &= 111~111~359~999~997~751 \\ 999~999~991\times111~111~381 &= 111~111~379~999~997~571 \\ 999~999~991\times111~111~401 &= 111~111~399~999~997~391 \\ \\ 999~999~991\times111~111~561 &= 111~111~559~999~995~951 \\ 999~999~991\times111~111~581 &= 111~111~579~999~995~771 \\ 999~999~991\times111~111~601 &= 111~111~599~999~995~591 \end{aligned}

See the pattern? It's so beautiful! ...to my eyes, at least.


So anyway, the answer to this problem is:

n = 1 10 f ( 999 999 991 , n ) = 111 111 000 × 10 + 121 + 141 + 161 + 181 + 201 + 341 + 361 + 381 + 401 + 561 = 1 111 112 850 . \begin{aligned} \sum_{n=1}^{10} f(999~999~991,~n) &=111~111~000\times10+121+141+161+181+201+341+361+381+401+561 \\ &=\boxed{1~111~112~850}. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...