These functions drive me crazy(Part II)!

Calculus Level 4

If f(x) be a function satisfying the condition

f ( x ) = 1 3 [ f ( x + 6 ) + 6 f ( x + 7 ) ] f(x)=\frac{1}{3}[f(x+6)+\frac{6}{f(x+7)}]

and f(x) is greater than zero for every x belongs to R(set of real no) then

l i m x f ( x ) = m lim_{x\rightarrow\infty} f(x)=\sqrt{m}

Find the value of m

6 1 2 3 4 5 0 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 24, 2015

f ( x ) = 1 3 ( f ( x + 6 ) + 6 f ( x + 7 ) ) = f ( x + 6 ) 3 + 2 f ( x + 7 ) lim x f ( x ) = lim x ( f ( x + 6 ) 3 + 2 f ( x + 7 ) ) m = m 3 + 2 m m = m 3 + 2 2 m 3 = 2 m = 3 \begin{aligned} f(x) & = \frac{1}{3}\left(f(x+6) + \frac{6}{f(x+7)} \right) = \frac{f(x+6)}{3} + \frac{2}{f(x+7)} \\ \lim_{x \to \infty} f(x) & = \lim_{x \to \infty} \left(\frac{f(x+6)}{3} + \frac{2}{f(x+7)} \right) \\ \sqrt{m} & = \frac{\sqrt{m}}{3} + \frac{2}{\sqrt{m}} \\ \Rightarrow m & = \frac{m}{3} + 2 \\ \frac{2m}{3} & = 2 \\ m & = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...