These Long Years

Calculus Level 3

lim x 1 ( 2018 1 x 2018 1998 1 x 1998 ) = ? \large {\lim _{ x\rightarrow 1 }{ \left( \frac { 2018 }{ 1-{ x }^{ 2018 } } -\frac { 1998 }{ 1-{ x }^{ 1998 } } \right) } } =\ ?


This question is part of My Mathematics Set .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 10, 2018

L = lim x 1 ( 2018 1 x 2018 1998 1 x 1998 ) = 2018 ( 1 x 1998 ) 1998 ( 1 x 2018 ) ( 1 x 2018 ( 1 x 1998 ) L = {\lim _{ x\rightarrow 1 }{ \left( \frac { 2018 }{ 1-{ x }^{ 2018 } } -\frac { 1998 }{ 1-{ x }^{ 1998 } } \right) } } = \dfrac{2018\,(1-x^{1998} )- 1998\,(1-x^{2018})}{ \,(1-x^{2018}\,(1-x^{1998})} Simplifying the the function we get L = lim x 1 ( 2018 2018 x 1998 1998 + 1998 x 2018 1 x 1998 x 2018 + x 2018 + 1998 ) L =\lim_{x\to 1} \left(\dfrac{2018 - 2018\cdot x^{1998} -1998 +1998x^{2018}}{1 -x^{1998} -x^{2018} + x^{2018+1998}}\right) if we input x = 1 x=1 them limit of the function L = 0 0 L= \dfrac{0}{0} . Hence , we can apply L-hopital rule. L = lim x 1 ( 0 2018 1998 x 1997 0 + 1998 2018 x 2017 0 1998 x 1997 2018 x 2017 + ( 2018 + 1998 ) x 2018 + 1998 1 ) L = \lim_{x\to 1}\left( \dfrac{0 - 2018\cdot 1998x^{1997} -0+ 1998\cdot 2018 x^{2017}}{0- 1998\cdot x^{1997} -2018\cdot x^{2017}+ \,(2018+1998)x^{2018+1998-1}}\right) Again if we input x = 1 x=1 then limit is still 0 0 \dfrac{0}{0} so we need to apply L-hopital rule once more. L = lim x 1 ( 2018 1998 1997 x 1996 + 1998 2018 2017 x 2016 1998 1997 x 1996 2018 2017 x 2016 + ( 2018 + 1998 ) ( 2018 + 1997 ) x 2018 + 1998 2 ) L = ( 2018 1998 1997 + 1998 2018 2017 1998 1997 2018 2017 + ( 2018 + 1998 ) ( 2018 + 1997 ) = 2018 1998 ( 2017 1997 ) 2 2018 1998 = 10 L = \lim_{x\to 1} \left(\dfrac{-2018\cdot 1998\cdot 1997x^{1996}+ 1998\cdot 2018\cdot 2017x^{2016} }{-1998\cdot 1997 x^{1996} -2018\cdot 2017x^{2016}+\,(2018+1998)\,(2018+1997)x^{2018+1998-2}}\right) \\ \therefore L = (\dfrac{-2018\cdot 1998\cdot 1997+ 1998\cdot 2018\cdot 2017 }{-1998\cdot 1997 -2018\cdot 2017+\,(2018+1998)\,(2018+1997)} = \dfrac{2018\cdot 1998\,(2017-1997)}{2\cdot 2018\cdot 1998 } =\boxed{10} Therefore, the limit of the function is 10 \boxed{10} .


The limit lim x 1 ( m 1 x m n 1 x n ) = ? \large {\lim _{ x\rightarrow 1 }{ \left( \frac { m }{ 1-{ x }^{m } } -\frac { n }{ 1-{ x }^{n } } \right) } } =\ ? can be generalized to m n 2 \frac{m-n}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...