Let , , , and be five points in a plane whose coordinates are , , , and respectively.
is bisected at ; is divided at in the ratio ; is divided at in the ratio and is divided at in the ratio .
Given that is the circumcenter of with coordinates of , and .
Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the given proportions, we get the co-ordinates of B n . n = 1 , 2 , 3 , 4 . A 1 ( 1 , − 1 ) . . . . . . . . . . . . . . A 2 ( 2 , − 3 ) , r a t i o 1 : 1 ∴ B 1 ( 3 / 2 , − 2 ) . B 1 ( 3 / 2 , − 2 ) . . . . . . . . . . . A 3 ( 3 , − 2 ) , r a t i o 1 : 2 ∴ B 2 ( 2 , − 2 ) . B 2 ( 2 , − 2 ) . . . . . . . . . . . . A 4 ( − 1 0 , − 4 ) , r a t i o 1 : 3 ∴ B 3 ( − 1 , − 5 / 2 ) . B 3 ( − 1 , − 5 / 2 ) . . . . . . . . . . A 5 ( 4 , 1 0 ) , r a t i o 1 : 4 ∴ B 4 ( 0 , 0 ) . ∴ c i r c u m r a d i u s R 2 = ( a − 0 ) 2 + ( b − 0 ) 2 = ( c − 0 ) 2 + ( d − 0 ) 2 = C o s 2 θ + s i n 2 θ = 1 . ⟹ a 2 + b 2 + c 2 + d 2 = 1 + 1 = 2