These points will make you crazy!

Geometry Level 5

Let A 1 A_{1} , A 2 A_{2} , A 3 A_{3} , A 4 A_{4} and A 5 A_{5} be five points in a plane whose coordinates are ( 1 , 1 ) (1,-1) , ( 2 , 3 ) (2,-3) , ( 3 , 2 ) (3,-2) , ( 10 , 4 ) (-10,-4) and ( 4 , 10 ) (4,10) respectively.

A 1 A 2 A_{1}A_{2} is bisected at B 1 B_{1} ; B 1 A 3 \ B_{1}A_{3} is divided at B 2 B_{2} in the ratio 1 : 2 1:2 ; B 2 A 4 \ B_{2}A_{4} is divided at B 3 B_{3} in the ratio 1 : 3 1:3 and B 3 A 5 B_{3}A_{5} is divided at B 4 B_{4} in the ratio 1 : 4 1:4 .

Given that B 4 B_{4} is the circumcenter of K L M \triangle KLM with coordinates of K = ( sin θ , cos θ ) K=(\sin \theta,\cos \theta) , L = ( a , b ) L=(a,b) and M = ( c , d ) M=(c,d) .

Find the value of a 2 + b 2 + c 2 + d 2 a^{2}+b^{2}+c^{2}+d^{2} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the given proportions, we get the co-ordinates of B n . n = 1 , 2 , 3 , 4. A 1 ( 1 , 1 ) . . . . . . . . . . . . . . A 2 ( 2 , 3 ) , r a t i o 1 : 1 B 1 ( 3 / 2 , 2 ) . B 1 ( 3 / 2 , 2 ) . . . . . . . . . . . A 3 ( 3 , 2 ) , r a t i o 1 : 2 B 2 ( 2 , 2 ) . B 2 ( 2 , 2 ) . . . . . . . . . . . . A 4 ( 10 , 4 ) , r a t i o 1 : 3 B 3 ( 1 , 5 / 2 ) . B 3 ( 1 , 5 / 2 ) . . . . . . . . . . A 5 ( 4 , 10 ) , r a t i o 1 : 4 B 4 ( 0 , 0 ) . c i r c u m r a d i u s R 2 = ( a 0 ) 2 + ( b 0 ) 2 = ( c 0 ) 2 + ( d 0 ) 2 = C o s 2 θ + s i n 2 θ = 1. a 2 + b 2 + c 2 + d 2 = 1 + 1 = 2 \text{From the given proportions, we get the co-ordinates of } B_n. n=1, 2, 3, 4.\\ A_1(1,-1)..............A_2(2,-3), \ \ \ \ \ \ ratio\ \ 1:1 \ \ \ \ \ \therefore\ \ B_1(3/2,-2).\\ B_1(3/2,-2)...........A_3(3,-2), \ \ \ \ \ \ ratio\ \ 1:2\ \ \ \ \ \therefore\ \ B_2(2,-2).\\ B_2(2,-2)............A_4(-10,-4), \ \ \ ratio\ \ 1:3\ \ \ \ \ \therefore\ \ B_3(-1,-5/2).\\ B_3(-1,-5/2)..........A_5(4,10), \ \ \ \ \ \ ratio\ \ 1:4\ \ \ \ \ \therefore\ \ B_4(0,0).\\ \therefore\ circumradius\ R^2=(a-0)^2+(b-0)^2=(c-0)^2+(d-0)^2=Cos^2\theta+sin^2\theta=1.\\ \implies\ a^2+b^2+c^2+d^2=1+1=\Large\ \ \ \ \ \color{#D61F06}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...