These springs again!

A mass m is attached to one end of a spring of zero equilibrium length,the other end of which is fixed.The spring constant is K .Initial conditions are set up so that the mass moves around in a circle of radius L on a friction less horizontal table.

(By "zero equilibrium length" ,we mean that the equilibrium length is negligible compared to L)

At a given time ,a vertical pole(of radius a ,with a<<L ) is fixed onto the table next to the centre of the circle as in figure.The spring winds around,and the mass eventually hits the pole.Assume that any part of the spring touching the pole does not slip.The time taken for the mass to hit the pole is:-

T = Δ Δ + 1 L a m K T=\frac { \Delta }{ \Delta +1 } \frac { L }{ a } \sqrt { \frac { m }{ K } }

Find value of Δ \Delta

PS:: I found this on a book and i couldn't solve it,if anyone can add a solution to this , that would be very kind of you .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x ( t ) x(t) be the length of the unwrapped part of the spring, θ ( t ) \theta (t) be the angle through which the spring moves, v ( t ) v(t) is the speed of the mass and k ( t ) k(t) be the spring constant of the unwrapped part of the spring.

m v 2 x = k x \frac { m{ v }^{ 2 } }{ x } =kx

Using this value of v, the frequency of the circular motion is given by:

ω = Δ θ Δ t = v x = k m \omega =\frac { \Delta \theta }{ \Delta t } =\frac { v }{ x } =\sqrt { \frac { k }{ m } } \\

Note: k k is inversely proportional to the equilibrium length, the change in angle of the contact point on the pole equals the change in angle of the mass around the pole which is  Δ θ \Delta \theta and the fractional decrease in the equilibrium length of the unwrapped part is Δ θ = a Δ θ x \Delta \theta =\frac { a\Delta \theta }{ x } so the spring constant is:

k n e w = k o l d 1 a Δ θ x k o l d = 1 + a Δ θ x Δ k = k a Δ θ x { k }_{ new }=\frac { { k }_{ old } }{ 1-\frac { a\Delta \theta }{ x } } \approx { k }_{ old }=1+\frac { a\Delta \theta }{ x } \\ \therefore \Delta k=\frac { ka\Delta \theta }{ x } dividing be Δ t \Delta t \Rightarrow k . = k a ω x \overset { . }{ k } =\frac { ka\omega }{ x }

The final equation we need is the conservation of energy:

1 2 k x 2 + 1 2 m v 2 = 1 2 k x 2 + 1 2 m v 2 + ( 1 2 k x 2 ) ( a Δ θ x ) \frac { 1 }{ 2 } k{ x }^{ 2 }+\frac { 1 }{ 2 } m{ v }^{ 2 }=\frac { 1 }{ 2 } k^{ ' }x^{ '2 }+\frac { 1 }{ 2 } m^{ ' }v^{ '2 }+(\frac { 1 }{ 2 } k{ x }^{ 2 })(\frac { a\Delta \theta }{ x } )

By using these equations:

k x 2 = k x 2 + 1 2 m v 2 + 1 2 k x a Δ θ 1 2 K x a ω = Δ ( K x 2 ) Δ t = k . x 2 + 2 L x x . = ( k a ω x ) x 2 + 2 k x x . x . = 3 4 a ω x . x = 3 k . 4 k k = K L 4 3 x 4 3 x 2 3 x . = 3 a K 1 2 L 2 3 a m 1 2 x 5 3 = L 5 3 ( 5 a K 1 2 L 2 3 4 m 1 2 ) t x ( t ) = L ( 1 t T ) 3 5 w h e r e T = 4 5 L a m K k{ x }^{ 2 }=k^{ ' }x^{ '2 }+\frac { 1 }{ 2 } m^{ ' }v^{ '2 }+\frac { 1 }{ 2 } k{ x }a\Delta \theta \\ -\frac { 1 }{ 2 } Kxa\omega =\frac { \Delta (K{ x }^{ 2 }) }{ \Delta t } \\ \quad \quad \quad \quad \quad =\overset { . }{ k } { x }^{ 2 }+2Lx\overset { . }{ x } \\ \quad \quad \quad \quad \quad =(\frac { ka\omega }{ x } ){ x }^{ 2 }+2kx\overset { . }{ x } \\ \overset { . }{ x } =-\frac { 3 }{ 4 } a\omega \\ \frac { \overset { . }{ x } }{ x } =-\frac { 3\overset { . }{ k } }{ 4k } \\ k=\frac { K{ L }^{ \frac { 4 }{ 3 } } }{ { x }^{ \frac { 4 }{ 3 } } } \\ { x }^{ \frac { 2 }{ 3 } }\overset { . }{ x } =-\frac { 3a{ K }^{ \frac { 1 }{ 2 } }{ L }^{ \frac { 2 }{ 3 } } }{ a{ m }^{ \frac { 1 }{ 2 } } } \\ { x }^{ \frac { 5 }{ 3 } }={ L }^{ \frac { 5 }{ 3 } }-(\frac { 5a{ K }^{ \frac { 1 }{ 2 } }{ L }^{ \frac { 2 }{ 3 } } }{ 4{ m }^{ \frac { 1 }{ 2 } } } )t\\ x(t)=L{ (1-\frac { t }{ T } ) }^{ \frac { 3 }{ 5 } }\\where \quad T=\frac { 4 }{ 5 } \frac { L }{ a } \sqrt { \frac { m }{ K } }

is the time for which x ( t ) = 0 x(t)=0 and the mass hits the pole.

\\ T=\frac { \Delta }{ \Delta +1 } \frac { L }{ a } \sqrt { \frac { m }{ K } } =\frac { 4 }{ 5 } \frac { L }{ a } \sqrt { \frac { m }{ K } } \\ so\quad \Delta =4\\

is this really a level 4 qn?

Krack Man - 6 years, 4 months ago

Log in to reply

I agree. Should definitely be level 5.

Shashwat Shukla - 6 years, 4 months ago

Brilliant solution to brilliant question.

Kushal Patankar - 6 years, 4 months ago

Log in to reply

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...