They call it Newton's Sum?

Algebra Level 4

Consider a , b , c a,b,c as complex and irrational numbers which satisfy:

a + b + c = 1 a+b+c=1

a 2 + b 2 + c 2 = 4 a^{2}+b^{2}+c^{2}=4

a 3 + b 3 + c 3 = 9 a^{3}+b^{3}+c^{3}=9

If a , b , c a,b,c are roots of monic polynomial x 3 + p x 2 + q x + r x^{3}+px^{2}+qx+r .

Find p + q + r p+q+r

Note:

Answer correctly up to three digits.


The answer is -3.666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 16, 2015

By Vieta's formula, we have: { p = ( a + b + c ) = 1 q = a b + b c + c a r = a b c \begin{cases} p = -(a + b + c) = -1 \\ q = ab + bc + ca \\ r = -abc \end{cases}

Using Newton's sums method, we have:

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + b c + c a ) 4 = 1 2 ( a b + b c + c a ) a b + b c + c a = 3 2 q = 3 2 \begin{aligned} a^2+b^2+c^2 & = (a+b+c)^2 - 2(ab+bc+ca) \\ 4 & = 1 - 2(ab+bc+ca) \\ ab+bc+ca & = - \frac{3}{2} \\ \Rightarrow q & = -\frac{3}{2} \end{aligned}

a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ( a + b + c ) + 3 a b c 9 = ( 1 ) ( 4 ) ( 3 2 ) ( 1 ) + 3 a b c a b c = 7 6 r = 7 6 \begin{aligned} a^3+b^3+c^3 & = (a+b+c)(a^2+b^2+c^2) - (ab+bc+ca)(a+b+c) +3abc \\ 9 & = (1)(4) - \left(-\frac{3}{2} \right)(1) + 3abc \\ abc & = \frac{7}{6} \\ \Rightarrow r & = - \frac{7}{6} \end{aligned}

p + q + r = 1 3 2 7 6 = 11 3 3.667 \Rightarrow p + q + r = -1 -\dfrac{3}{2} - \dfrac{7}{6} = -\dfrac{11}{3} \approx \boxed{-3.667}

Nice!

Slight improvement: You can use the following identity to simplify your work,

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b a c b c ) . a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-ac-bc).

Pi Han Goh - 5 years, 9 months ago

Log in to reply

correct thats way easier used the same way sir

Kaustubh Miglani - 5 years, 8 months ago
Akshat Sharda
Sep 15, 2015

Even I call it N e w t o n s Newton's S u m Sum ¨ \ddot \smile

I also think so. Newton sum has a role in it.

Anshuman Singh Bais - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...