They look like coefficients of cubic polynomial!

If x , y x,y and z z are positive integers satisfying x y z + x y + y z + x z + x + y + z = 384 xyz+xy+yz+xz+x+y+z = 384 , find the value of x + y + z x+y+z .

17 15 25 20

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x y z + x y + y z + x z + x + y + z = 384 xyz + xy + yz + xz + x + y + z = 384

( x + 1 ) ( y + 1 ) ( z + 1 ) = x y z + x y + y z + x z + x + y + z + 1 (x + 1) (y + 1) (z + 1) = xyz + xy + yz + xz + x + y + z + 1

( x + 1 ) ( y + 1 ) ( z + 1 ) = 384 + 1 = 385 (x + 1) (y + 1) (z + 1) = 384 + 1 = 385

( x + 1 ) ( y + 1 ) ( z + 1 ) = ( 5 ) ( 7 ) ( 11 ) (x + 1) (y + 1) (z + 1) = (5) (7) (11)

( x + 1 ) + ( y + 1 ) + ( z + 1 ) = 5 + 7 + 11 (x + 1) + (y + 1) + (z + 1) = 5 + 7 + 11

x + y + z + 3 = 23 x + y + z + 3 = 23

x + y + z = 20 x + y + z = 20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...