Could they be the same?

Calculus Level 1

Which is bigger?

( 1.1 ) 10000 (1.1)^{10000} 1000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Oct 11, 2015

The trick is to observe that ( 1.1 ) n = 1 + n ( 0.1 ) + > 1 + n 10 . (1.1)^n = 1 + n\cdot(0.1) + \dots > 1 + \frac{n}{10}. Therefore, ( 1.1 ) 10000 > 1 + 1000. (1.1)^{10000} > 1 + 1000.

we know that (1+x)^n= 1+[nx]+[n(n-1)/2] *x^2 --------------; now ,(1.1)= (1+0.1); (1.1)^10000 =(1+0.1)^10000; =1+ (10000 X 0.1)+ a positive value; =1+1000+ a positive value; =1001+ a positive value > 1000

Your solution in Latex:

( 1 + x ) n = 1 + n x + n ( n 1 ) x 2 2 ! + n ( n 1 ) ( n 2 ) x 3 3 ! + ( 1.1 ) 10000 = ( 1 + 0.1 ) 10000 = 1 + 10000 × 0.1 + = 1 + 1000 + = 1001 + > 1000 { \left( 1+x \right) }^{ n }=1+nx+\frac { { n(n-1)x }^{ 2 } }{ 2! } +\frac { { n(n-1)(n-2)x }^{ 3 } }{ 3! } +\dots \\ \\ \quad \quad \quad \quad \quad { (1.1) }^{ 10000 }={ (1+0.1) }^{ 10000 }\\ \quad \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =1+10000\times 0.1+\dots \\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =1+1000+\dots \\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =1001+\dots \quad >\quad 1000

Dinesh Nath Goswami - 5 years, 8 months ago

Log in to reply

thanks ,next time i will write in Latex.

manish kumar singh - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...