They're all PRIME!!

Find the remainder when 2 3 23 23^{23} is divided by 31 31 ?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vighnesh Raut
Dec 5, 2014

23 23 ( 8 ) 23 ( m o d 31 ) ( 8 ) 23 ( m o d 31 ) ( 2 3 ) 23 ( m o d 31 ) ( 2 ) 69 ( m o d 31 ) ( 2 ) 65 . 16 ( m o d 31 ) ( 2 5 ) 13 . 16 ( m o d 31 ) ( 32 ) 13 . 16 ( m o d 31 ) ( 1 ) 13 . 16 ( m o d 31 ) 16 ( m o d 31 ) 15 ( m o d 31 ) { 23 }^{ 23 }\equiv { (-8) }^{ 23 }\quad (mod\quad 31)\\ \quad \quad \quad \equiv -{ (8) }^{ 23 }\quad (mod\quad 31)\\ \quad \quad \quad \equiv -{ { (2 }^{ 3 } })^{ 23 }\quad (mod\quad 31)\\ \quad \quad \quad \equiv -({ 2) }^{ 69 }\quad (mod\quad 31)\\ \quad \quad \quad \equiv -({ 2) }^{ 65 }.16\quad (mod\quad 31)\\ \quad \quad \quad \equiv -{ { (2 }^{ 5 }) }^{ 13 }.16\quad (mod\quad 31)\\ \quad \quad \quad \equiv -({ 32) }^{ 13 }.16\quad (mod\quad 31)\\ \quad \quad \quad \equiv -({ 1) }^{ 13 }.16\quad (mod\quad 31)\\ \quad \quad \quad \equiv -16\quad (mod\quad 31)\\ \quad \quad \quad \equiv 15\quad (mod\quad 31)

Nice Solution.. Well Done

Prokash Shakkhar - 4 years, 5 months ago
Jaiveer Shekhawat
Nov 26, 2014

88 88

00 00

r 2 3 23 ( m o d 31 ) 0 r < 31 ( 2 3 22 ) ( 23 ) ( m o d 31 ) ( 52 9 11 ) ( 23 ) ( m o d 31 ) ( 2 11 ) ( 23 ) ( m o d 31 ) ( 3 2 2 ) ( 2 ) ( 23 ) ( m o d 31 ) ( 1 ) ( 2 ) ( 23 ) ( m o d 31 ) 46 ( m o d 31 ) 15 ( m o d 31 ) \begin{aligned} r &\equiv 23^{23} \pmod{31} \ &\blue{0 \leq r <31} \\ &\equiv (23^{22})(23) \pmod{31} \\ &\equiv (529^{11})(23) \pmod{31} \\ &\equiv (2^{11})(23) \pmod{31} \\ &\equiv (32^2)(2)(23) \pmod{31} \\ &\equiv (1)(2)(23) \pmod{31} \\ &\equiv 46 \pmod{31} \\ &\equiv \boxed{15} \pmod{31} \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...