Think!

Algebra Level 2

Given that f ( 2 x ) + x f ( 2 x ) = 1 f(2^x)+xf(2^{-x})=1 , find the value of f ( 2 ) f(2) .

1 -2 0 -3 3 2 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Victor Loh
Jul 18, 2015

Sub x = 1 x=1 , we get f ( 2 ) + f ( 1 2 ) = 1 f(2)+f\left(\frac{1}{2}\right)=1 .

Sub x = 1 x=-1 , we get f ( 1 2 ) f ( 2 ) = 1 f\left(\frac{1}{2}\right)-f(2)=1 .

First equation - Second equation:

2 f ( 2 ) = 0 f ( 2 ) = 0 . 2f(2)=0 \implies f(2)=\boxed{0}.

I used a similar approach:

f ( 2 x ) + x f ( 2 x ) = 1 = f ( 2 x ) + ( x ) f ( 2 x ) f(2^x) + x*f(2^{-x} )= 1 = f(2^{-x} ) +(-x)f(2^x)

f ( 2 x ) ( x ) f ( 2 x ) + x f ( 2 x ) f ( 2 x ) = 0 \Rightarrow f(2^x) - (-x)f(2^x) + xf(2^{-x}) - f(2^{-x}) = 0

f ( 2 x ) ( 1 + x ) + f ( 2 x ) ( 1 x ) = 0 \Rightarrow f(2^x)(1+x) + f(2^{-x})(1-x) = 0

Plugging in x = 1 x = 1 gets us: f ( 2 ) ( 1 + 1 ) + f ( 1 2 ) ( 1 1 ) = f ( 2 ) 2 + 0 = 0 f(2)(1+1) + f({1 \over 2}) (1-1) = f(2)*2 + 0 = 0

2 f ( 2 ) = 0 \Rightarrow 2*f(2) = 0 f ( 2 ) = 0 \Rightarrow f(2) = 0

(dunno, why I can't post this anymore as a solution)

Alisa Meier - 5 years, 10 months ago

sAme Way!!!

Kaustubh Miglani - 5 years, 2 months ago

Did the same

Aditya Kumar - 5 years ago
Som Ghosh
Jul 18, 2015

f ( 2 x ) + x f ( 2 x ) = 1 p u t t i n g x i n p l a c e o f x f ( 2 x ) x f ( 2 x ) = 1 s o l v i n g t h e s e t w o e q u a t i o n f ( 2 x ) = 1 x 1 + x 2 h e n c e , p u t t i n g x = 1 f ( 2 ) = 0 f({ 2 }^{ x })+xf({ 2 }^{ -x })\quad =\quad 1\\ putting\quad -x\quad in\quad place\quad of\quad x\\ f({ 2 }^{ -x })-xf({ 2 }^{ x })\quad =\quad 1\\ solving\quad these\quad two\quad equation\\ f({ 2 }^{ x })\quad =\quad \frac { 1-x }{ 1+{ x }^{ 2 } } \\ hence,\quad putting\quad x=1\\ f(2)\quad =\quad 0

I like this because it gives you an explicit definition for the function. Let 2 x = y 2^x=y and rearrange: x = log 2 y x=\log_2 y , you can express the function as f ( y ) = 1 log 2 y 1 + log 2 y f(y)=\frac{1-\log_2 y}{1+\log_2 y}

Davy Ker - 4 years, 12 months ago
Lew Sterling Jr
Jul 23, 2015

x = 1, f(2) + f(1/2) = 1

x = -1, f(1/2) - f(2) = 1

f(2) + f(1/2) = f(1/2) - f(2)

2f(2) = 0

f(2) = 0

Bill Bell
Oct 5, 2015

I couldn't do this with Python's sympy but someone on quora.com just showed me how to do it with Sage.

Let x = 1, then f(2) + f(1/2) = 1. (1)

Let x = log_2(1/2), in this case f((1/2)) - f(2) = 1 (2)

From (1) and (2) f(1/2) = 1. Thus, f(2) = 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...