Radically defined

Geometry Level 3

a sin ( x ) 2 cos ( x ) = 2 + 2 a \large \sqrt a \sin(x) - 2\cos(x) = \sqrt 2 + \sqrt{2-a}

For constant a a , if there exist real solution(s) of x x for the equation above, find the range of a a .

0 a 2 0\leq a\leq2 a > 0 a>0 a 3 a\leq3 5 1 a 2 \sqrt5 -1\leq a\leq2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 27, 2018

a sin θ 2 cos θ = 2 + 2 a Note that a , 2 a 0 0 a 2 a + 4 sin ( x tan 1 2 a ) = 2 + 2 a sin ( x tan 1 2 a ) = 2 + 2 a a + 4 \begin{aligned} \sqrt a \sin \theta - 2 \cos \theta & = \sqrt 2 + \sqrt{2-a} & \small \color{#3D99F6} \text{Note that }\sqrt a, \sqrt{2-a} \ge 0 \implies 0 \le a \le 2 \\ \sqrt{a+4} \sin \left(x - \tan^{-1} \frac 2{\sqrt a}\right) & = \sqrt 2 + \sqrt{2-a} \\ \sin \left(x - \tan^{-1} \frac 2{\sqrt a}\right) & = \frac {\sqrt 2 + \sqrt{2-a}}{\sqrt{a+4}} \end{aligned}

We note that, for 0 a 2 0 \le a \le 2 , 1 3 2 + 2 a a + 4 2 \dfrac 1{\sqrt 3} \le \dfrac {\sqrt 2 + \sqrt{2-a}}{\sqrt{a+4}} \le \sqrt 2 . But sin ( x tan 1 2 a ) 1 \sin \left(x - \tan^{-1} \frac 2{\sqrt a}\right) \le 1 , then

2 + 2 a a + 4 1 2 + 2 a a + 4 Squaring both sides 2 + 2 4 2 a + 2 a a + 4 Rearranging 4 2 a a Squaring both sides again 4 2 a a 2 Rearranging a 2 + 2 a 4 0 \begin{aligned} \frac {\sqrt 2 + \sqrt{2-a}}{\sqrt{a+4}} & \le 1 \\ \sqrt 2 + \sqrt{2-a} & \le \sqrt{a+4} & \small \color{#3D99F6} \text{Squaring both sides} \\ 2 + 2\sqrt{4-2a} + 2 - a & \le a + 4 & \small \color{#3D99F6} \text{Rearranging} \\ \sqrt{4-2a} & \le a & \small \color{#3D99F6} \text{Squaring both sides again} \\ 4-2a & \le a^2 & \small \color{#3D99F6} \text{Rearranging} \\ a^2 + 2a - 4 & \ge 0 \end{aligned}

a 2 + 4 + 16 2 = 5 1 Note that a > 0 \begin{aligned} \implies a & \ge \frac {-2 + \sqrt{4+16}}2 = \sqrt 5 -1 & \small \color{#3D99F6} \text{Note that }a > 0 \end{aligned}

Therefore, 5 1 a 2 \boxed{\sqrt 5-1 \le a \le 2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...