Think

Algebra Level 3

If the value of log 343 25 × log 125 49 \log_{343} 25 \times \log_{125} 49 is equal to a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kay Xspre
Feb 2, 2016

Use the base switch rules, of which here I will use base e e . We will get l n ( 25 ) l n ( 343 ) × l n ( 49 ) l n ( 125 ) = 2 l n ( 5 ) 3 l n ( 7 ) × 2 l n ( 7 ) 3 l n ( 5 ) = 4 9 \frac{ln(25)}{ln(343)}\times\frac{ln(49)}{ln(125)} = \frac{2ln(5)}{3ln(7)}\times\frac{2ln(7)}{3ln(5)} = \frac{4}{9} Hence a + b = 4 + 9 = 13 a+b = 4+9 = 13

log 343 25 = 1 3 log 7 25 = 2 3 l o g 7 5 \log_{343} 25 = \frac{1}{3} \cdot \log_{7} 25 = \frac{2}{3} \cdot log_{7} 5 ;

log 125 49 = 1 3 l o g 5 49 = 2 3 l o g 5 7 \log_{125} 49 = \frac{1}{3} \cdot log_{5} 49 = \frac{2}{3} \cdot log_{5} 7 ;

log 343 25 × log 125 49 = 4 9 log 7 5 × log 5 7 = 4 9 log 7 7 = 4 9 \log _{343} 25 \times \log_{125} 49 = \frac{4}{9} \cdot \log_{7} 5 \times \log_{5} 7 = \frac{4}{9} \log_{7} 7 = \frac{4}{9} ... (4 + 9 =13)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...