Think A Little Bit

Geometry Level 4

Let n N \forall n \in \mathbb{N} , z n + 1 = 4 z n ( 1 z n ) z_{n+1}=4z_n(1-z_n) where z 1 = 3 5 8 z_1=\frac{3-\sqrt{5}}{8} .

Find z 5 × z 10 z_5 \times z_{10} .

If answer can be expressed in form a / b a/b , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since z 1 = 3 5 8 z_1 = \frac{3-\sqrt{5}}{8} , it is a root of 4 x 2 3 x + 1 4 = 0 4x^2 -3x + \frac{1}{4} = 0 . So that 4 z 1 2 = 3 z 1 1 4 4z_1^2 = 3z_1 - \frac{1}{4} .

Now, we have:

z 2 = 4 z 1 ( 1 z 1 ) = 4 z 1 4 z 1 2 = 4 z 1 3 z 1 + 1 4 z 2 = z 1 + 1 4 z 3 = 4 z 2 ( 1 z 2 ) = 4 ( z 1 + 1 4 ) ( 1 z 1 1 4 ) = ( 4 z 1 + 1 ) ( 1 z 1 1 4 ) = 4 z 1 ( 1 z 1 ) z 1 + 1 z 1 1 4 = z 2 2 z 1 + 3 4 = z 1 + 1 4 2 z 1 + 3 4 z 3 = 1 z 1 z 4 = 4 z 3 ( 1 z 3 ) = 4 ( 1 z 1 ) z 1 z 4 = z 2 z 5 = 1 z 1 z 6 = z 2 . . . . . . \begin{aligned} z_2 & = 4z_1(1-z_1) \\ & = 4z_1 - 4z_1^2 \\ & = 4z_1 - 3z_1 + \frac{1}{4} \\ \Rightarrow z_2 & = z_1 + \frac{1}{4} \\ z_3 & = 4z_2 (1-z_2) \\ & = 4 \left( z_1+\frac{1}{4} \right) \left(1 - z_1-\frac{1}{4} \right) \\ & = (4z_1+1) \left(1 - z_1-\frac{1}{4} \right) \\ & = 4z_1 \left(1 - z_1 \right) - z_1 + 1 - z_1-\frac{1}{4} \\ & = z_2 - 2z_1 + \frac{3}{4} \\ & = z_1 + \frac{1}{4} - 2z_1 + \frac{3}{4} \\ \Rightarrow z_3 & = 1 - z_1 \\ z_4 & = 4z_3(1-z_3) \\ & = 4 (1-z_1)z_1 \\ \Rightarrow z_4 & = z_2 \\ z_5 & = 1 - z_1 \\ z_6 & = z_2 \\ ... & \quad ... \end{aligned}

z n = { 1 z 1 if n > 1 is odd. z 2 if n is even. \Rightarrow z_n = \begin{cases} 1-z_1 & \text{if } n > 1 \text{ is odd.} \\ z_2 & \text{if } n \text{ is even.} \end{cases}

Therefore,

z 5 z 10 = ( 1 z 1 ) z 2 = ( 1 z 1 ) ( z 1 + 1 4 ) = 1 4 + 3 z 1 4 z 1 2 = 1 4 + 3 z 1 4 3 z 1 4 + 1 16 = 5 16 \begin{aligned} z_5z_{10} & = (1-z_1)z_2 \\ & = (1-z_1) \left( z_1+\frac{1}{4} \right) \\ & = \frac{1}{4} + \frac{3z_1}{4} - z_1^2 \\ & = \frac{1}{4} + \frac{3z_1}{4} - \frac{3z_1}{4} + \frac{1}{16} \\ & = \frac{5}{16} \end{aligned}

a + b = 5 + 16 = 21 \Rightarrow a + b = 5 + 16 = \boxed{21}

Z 1 = 3 5 8 = C o s 2 72. Z 2 = 4 C o s 2 72 ( 1 C o s 2 72 ) = S i n 2 ( 2 72 ) = S i n 2 ( 36 ) = 5 5 8 . Z 3 = 4 S i n 2 ( 36 ) C o s 2 ( 36 ) = S i n 2 ( 72 ) = 5 + 5 8 . Z 4 = 4 S i n 2 ( 72 ) C o s 2 ( 72 ) ) = S i n 2 ( 144 ) = S i n 2 ( 36 ) So for odd n>1, Z n = 5 + 5 8 And for even n, Z n = 5 5 8 Z 5 Z 10 = 5 + 5 8 5 5 8 = 25 5 8 2 = 5 16 a + b = 5 + 16 = 21. Z_1=\dfrac{3-\sqrt5} 8=Cos^272.\\ \therefore~Z_2=4*Cos^272*(1-Cos^272)=Sin^2(2*72)=Sin^2(36)=\dfrac{5 - \sqrt5}8.\\ \therefore~Z_3=4*Sin^2(36)*Cos^2(36)=Sin^2(72)=\dfrac{5 + \sqrt5}8.\\ \therefore~Z_4=4*Sin^2(72)*Cos^2(72))=Sin^2(144)=Sin^2(36)\\ \text{So for odd n>1, }Z_n=\dfrac{5 + \sqrt5}8\\ \text{And for even n, }Z_n=\dfrac{5 - \sqrt5}8\\ \therefore~~Z_5*Z_{10}=\dfrac{5 + \sqrt5}8*\dfrac{5 - \sqrt5}8=\dfrac{25 - 5}{8^2}=\dfrac 5 {16}\\ \implies~~a+b=5+16=21.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...