A geometry problem by vishwathiga jayasankar

Geometry Level 2

If sin x + sin 2 x = 1 \sin x +\sin^2 x = 1 , then which of the options is true?

cos x + cos 2 x = 1 \cos x +\cos^2 x =1 cos x cos 2 x = 1 \cos x- \cos^2 x = 1 cos 2 x + cos 4 x = 1 \cos^2 x + \cos^4 x = 1 cos 4 x + cos 3 x = 1 \cos^4 x + \cos^3 x = 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Oct 1, 2016

sin ( x ) + sin 2 ( x ) = 1 sin , ( x ) = 1 sin 2 ( x ) sin ( x ) = cos 2 ( x ) sin ( x ) + sin 2 ( x ) = 1 cos 2 ( x ) + cos 4 ( x ) = 1 \sin(x)+\sin^2(x)=1\\ \sin,(x)=1-\sin^2(x)\\ \sin(x)=\cos^2(x)\\ \sin(x)+\sin^2(x)=1\\ \cos^2(x)+\cos^4(x)=1

sin x + sin 2 x = 1 sin x = 1 sin 2 x sin x = cos 2 x sin 2 x = cos 4 x \begin{aligned} \sin x + \sin^2 x & = 1 \\ \sin x & = 1 - \sin^2 x \\ \color{#3D99F6}{\sin x} & \color{#3D99F6}{= \cos^2 x} \\ \color{#D61F06}{\sin^2 x} & \color{#D61F06}{= \cos^4 x}\end{aligned}

Therefore,

sin x + sin 2 x = 1 cos 2 x + cos 4 x = 1 \begin{array} {r} \color{#3D99F6}{\sin x} + \color{#D61F06}{\sin^2 x} = 1 \ \\ \implies \boxed{\color{#3D99F6}{\cos^2 x} + \color{#D61F06}{\cos^4 x} = 1} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...