Think about it!

Calculus Level pending

Find the smallest possible value of α \alpha such that;

n = 1 N 2 n + 1 ( n 2 + 1 ) ( n 2 + 2 n + 2 ) α \sum _{ n=1 }^{ N }{ \frac { 2n+1 }{ ({ n }^{ 2 }+1)({ n }^{ 2 }+2n+2) } } \le \alpha

Where N 1 N\ge 1

Impossible to determine 1 4 \frac { 1 }{ 4 } 1 1 2 \frac { 1 }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adil Brohi
Jul 16, 2014

Begin with breaking the expression into partial fractions;

2 n + 1 ( n 2 + 1 ) ( n 2 + 2 n + 2 ) 1 ( n 2 + 1 ) 1 ( n + 1 ) 2 + 1 { \frac { 2n+1 }{ ({ n }^{ 2 }+1)({ n }^{ 2 }+2n+2) } }\equiv \frac { 1 }{ { (n }^{ 2 }+1) } -\frac { 1 }{ { (n+1) }^{ 2 }+1 }

Now using method of differences;

1 2 1 5 + 1 5 1 10 + . . . . 1 ( N 2 + 1 ) 1 ( N + 1 ) 2 + 1 n = 1 N 2 n + 1 ( n 2 + 1 ) ( n 2 + 2 n + 2 ) = 1 2 1 ( N + 1 ) 2 + 1 \frac { 1 }{ 2 } -\frac { 1 }{ 5 } +\frac { 1 }{ 5 } -\frac { 1 }{ 10 } +....\frac { 1 }{ (N^{ 2 }+1) } -\frac { 1 }{ { (N+1) }^{ 2 }+1 } \\ \sum _{ n=1 }^{ N }{ \frac { 2n+1 }{ ({ n }^{ 2 }+1)({ n }^{ 2 }+2n+2) } =\frac { 1 }{ 2 } -\frac { 1 }{ { (N+1) }^{ 2 }+1 } }

S e r i e s c o n v e r g e s w h e n w h e n N n = 1 N 2 n + 1 ( n 2 + 1 ) ( n 2 + 2 n + 2 ) = 1 2 1 ( N + 1 ) 2 + 1 n = 1 2 n + 1 ( n 2 + 1 ) ( n 2 + 2 n + 2 ) 1 2 α = 1 2 Series\quad converges\quad when\quad when\quad N\rightarrow \infty \\ \sum _{ n=1 }^{ N }{ \frac { 2n+1 }{ ({ n }^{ 2 }+1)({ n }^{ 2 }+2n+2) } =\frac { 1 }{ 2 } -\frac { 1 }{ { (N+1) }^{ 2 }+1 } } \\ \sum _{ n=1 }^{ \infty }{ \frac { 2n+1 }{ ({ n }^{ 2 }+1)({ n }^{ 2 }+2n+2) } \le \frac { 1 }{ 2 } } \\ \boxed { \alpha =\frac { 1 }{ 2 } }

This solution sure rings a bell. See my solution to this one

Simple Infinite Progression

Michael Mendrin - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...