Think about substitution

Calculus Level 3

1 n x x n 1 d x = α \large \int^\infty_1 \frac{n}{x\sqrt{x^n-1}} dx = \alpha

Find cos ( α ) \cos(\alpha) .

Source: BlackPenRedPen


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Isay Katsman
Apr 6, 2019

We attempt the substitution u = x n 1 u = \sqrt{x^n - 1} . Note that we obtain d u = n x n 1 2 x n 1 d x d x = 2 x n 1 n x n 1 d u du = \dfrac{nx^{n-1}}{2\sqrt{x^n-1}} dx \Rightarrow dx = \dfrac{2\sqrt{x^n-1}}{nx^{n-1}} du . This yields:

1 n x x n 1 d x = 0 2 x n d u = 2 0 1 1 + u 2 d u = 2 arctan ( u ) 0 = 2 ( π 2 0 ) = π \int^\infty_1 \frac{n}{x\sqrt{x^n-1}} dx = \int^{\infty}_{0} \frac{2}{x^n} du = 2 \int^\infty_0 \frac{1}{1+u^2} du = 2\: \text{arctan}(u) \bigg|^\infty_0 = 2\left(\frac{\pi}{2} - 0\right) = \pi

So the answer is cos ( π ) = 1 \cos(\pi) = \boxed{-1} .

Aaghaz Mahajan
Apr 11, 2019

Simply substitute x n 2 = sec θ \displaystyle x^{\frac{n}{2}}=\sec\theta and after simplifying, we need to solve 0 π 2 2 d θ \int_0^{\frac{\pi}{2}}2\ d\theta and thus, we get α = π \alpha=\pi making the answer 1 -1

Ellipse Nalies
Aug 28, 2019

Substitute u = x n 1 u=x^n-1 , then we obtain d u = n x n 1 d x du=nx^{n-1}dx and d x = 1 n x n 1 d u \displaystyle dx=\frac{1}{nx^{n-1}}du . Now we get:

0 n x u n x n 1 d u = 0 1 x n u d u = 0 1 ( u + 1 ) u d u \displaystyle \int _{ 0 }^{ \infty }{ \frac { n }{ x\sqrt { u } \cdot n{ x }^{ n-1 } } du } =\int _{ 0 }^{ \infty }{ \frac { 1 }{ { x }^{ n }\sqrt { u } } du } =\int _{ 0 }^{ \infty }{ \frac { 1 }{ \left( u+1 \right) \sqrt { u } } du }

Substitute again u = tan 2 θ u=\tan ^2 \theta , then we obtain d u = 2 tan θ sec 2 θ d θ du = 2\tan \theta \sec ^2 \theta d \theta . Apply this and we get:

0 π 2 2 tan θ sec 2 θ ( tan 2 θ + 1 ) tan θ d θ = 0 π 2 2 d θ = π \displaystyle\int _{ 0 }^{ \frac{\pi}{2} }{ \frac { 2\tan \theta \sec ^2 \theta }{ \left( \tan ^2 \theta +1 \right) \tan \theta } d\theta } =\int _{ 0 }^{ \frac{\pi}{2} }{2d\theta}=\pi

Thus the answer is cos π = 1 \cos\pi = \boxed{-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...