Think algebra would be easy?

Geometry Level 5

Challenge solve using pure Geometry only! \boxed{\large\text{Challenge}~\sim~\normalsize\text{solve using pure Geometry only!}}

In the given A B C \bigtriangleup ABC , A B = 4 AB = 4 , A C = 7 AC = 7 and A ^ = 6 0 \widehat{A} = 60^{\circ} , and if x 1 , x 2 x_1,~x_2 and x 3 x_3 are roots of the equation

x 3 ( 4 R + r ) x 2 + s 2 x s 2 r = 0 x^3 - (4R + r)x^2 + s^2x - s^2r = 0

where R R is the circum-radius, r r is the in-radius and s s is the semi perimeter of A B C \bigtriangleup\!\!\mathrm{ABC} . Find the value of x 1 3 + x 2 3 + x 3 3 x_1^3 + x_2^3 + x_3^3 rounded to nearest thousandths.


The answer is 625.634.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Aug 25, 2015

First of all,

a = b 2 + c 2 2 b c cos A s = a + b + c 2 NOTE: s is the semi perimeter of the Δ = 1 2 b c sin A NOTE: Δ is the area of the r 1 = Δ s a which is ex-radius 1 r 2 = Δ s b which is ex-radius 2 r 3 = Δ s c which is ex-radius 3 \displaystyle \begin{aligned} a&=\sqrt{b^2 + c^2 - 2bc\cos A}\\s& = \dfrac{a+b+c}{2}~~~~\text{NOTE: }s\text{ is the semi~perimeter of the } \bigtriangleup\\\\ \Delta &= \frac{1}{2}bc\sin A ~~~~\text{NOTE: }\Delta \text{ is the area of the } \bigtriangleup\\ r_1 & = \dfrac{\Delta}{s-a}~~\text {which is ex-radius}_1 \\ r_2 & = \dfrac{\Delta}{s-b}~~\text {which is ex-radius}_2 \\ r_3 & = \dfrac{\Delta}{s-c}~~\text {which is ex-radius}_3 \end{aligned}

Now,

r 1 + r 2 + r 3 r = ( r 1 r ) + ( r 2 + r 3 ) = 4 R sin 2 A 2 + 4 R cos 2 A 2 = 4 R r 1 + r 2 + r 3 = 4 R + r And, r 1 r 2 + r 2 r 3 + r 3 r 1 = Δ 2 ( 1 ( s a ) ( s b ) + 1 ( s b ) ( s c ) + 1 ( s c ) ( s a ) ) = Δ 2 × s 2 Δ 2 = s 2 And, r 1 r 2 r 3 = Δ 3 × s Δ 2 = Δ s = r s 2 \begin{aligned} r_1 + r_2 + r_3 - r &= (r_1 - r) + (r_2 + r_3) \\&= 4R\sin^2 \frac{A}{2} + 4R \cos^2 \frac{A}{2}\\&=4R\\\\ \Rightarrow r_1 + r_2 + r_3 &= 4R + r\\\\ \text{And, } r_1r_2 + r_2r_3 + r_3r_1 &= \Delta^2\left(\frac{1}{(s-a)(s-b)} + \frac{1}{(s-b)(s-c)} + \frac{1}{(s-c)(s-a)}\right)\\ &=\Delta^2 \times\frac{s^2}{\Delta^2} \\ &= s^2\\\\ \text{And, } r_1r_2r_3 &= \frac{\Delta^3 \times s}{\Delta^2}\\ &=\Delta s \\&= rs^2\\\end{aligned}

So, the roots of the equation x 3 ( 4 R + r ) x 2 + s 2 x s 2 r = 0 x^3 - (4R+r)x^2 + s^2x - s^2r=0 becomes r 1 , r 2 r_1, ~r_2 and r 3 r_3

Solving,

a = b 2 + c 2 b c = 65 28 = 37 s = 11 + 37 2 Δ = 1 2 b c sin A = 14 3 2 = 7 3 x 1 = r 1 = Δ s a = 14 3 11 37 x 2 = r 2 = Δ s b = 14 3 37 3 x 3 = r 3 = Δ s c = 14 3 37 + 3 x 1 3 + x 2 3 + x 3 3 625.634 \begin{aligned} a &= \sqrt{b^2 + c^2 - bc}\\&=\sqrt{65 - 28} \\&=\sqrt{37}\\ s &= \dfrac{11 + \sqrt{37}}{2}\\\\ \Delta = \frac{1}{2}bc \sin A &= 14\cdot\frac{\sqrt{3}}{2}\\&=7\sqrt{3}\\\\ x_1 = r_1 &= \frac{\Delta}{s-a} \\&=\frac{14\sqrt{3}}{11-\sqrt{37}}\\\\ x_2 = r_2 &= \frac{\Delta}{s-b} \\&=\frac{14\sqrt{3}}{\sqrt{37} - 3}\\\\ x_3 = r_3 &= \frac{\Delta}{s-c} \\&=\frac{14\sqrt{3}}{\sqrt{37} + 3}\\\\ \therefore x_1^3 + x_2^3 + x_3^3 &\approx \boxed{625.634}\end{aligned}

Moderator note:

While I understand where you are coming from, this is much more complicated than how people will approach it. Most likely, someone would just find out what R , r , s R, r, s are, and proceed using Vieta's formula.

@Calvin Lin sir, that's why the title is so. Using sum of roots and so would be tough. But using geometry would be easy. . .

Kishore S. Shenoy - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...