Think cool....

Geometry Level 2

sin 10 5 + cos 10 5 = ? \sin 105 ^ \circ +\cos 105^ \circ =?

2 \sqrt{2} 2 1 2 \frac{1} { \sqrt{2} } 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Mahindra Bhoi
Dec 8, 2014

(sin105+cos105)^2=1+ 2sin105cos105=1+sin210=1-sin30=1/2

Shahbaz Ali
Nov 30, 2014

sin(105) + cos(105)

= sin(60 + 45 ) + cos( 60 + 45 )

= sin(60)cos(45) + cos(60)sin(45) + cos(60)cos(45) - sin(60)sin(45)

= sqrt3/2 * 1/ sqrt2 + 1/2* 1/ sqrt2 + 1/2* 1/ sqrt2 - sqrt3/2 * 1/ sqrt2

first and fourth terms cancel each other and adding 2nd and 3rd term

= 1/ sqrt2

(sin105+cos105)^2=1+ 2sin105cos105=1+sin210=1-sin30=1/2

Ngố Xác - 6 years, 6 months ago

I used the same method. Retyping it in LaTex for you.

sin 10 5 + cos 10 5 = sin ( 6 0 + 4 5 ) + cos ( 6 0 + 4 5 ) \sin {105^\circ}+\cos{105^\circ} = \sin {(60^\circ + 45^\circ) } + \cos { ( 60 ^ \circ + 45 ^ \circ ) }

= sin ( 6 0 + 4 5 ) + cos ( 6 0 + 4 5 ) = sin 6 0 cos 4 5 + cos 6 0 sin 4 5 =\sin {(60^\circ + 45^\circ) } + \cos {(60 ^\circ + 45^\circ)} = \sin {60^\circ } \cos { 45^\circ } + \cos {60^\circ } \sin { 45^\circ }

= ( 3 2 ) ( 1 2 ) + ( 1 2 ) ( 1 2 ) + ( 1 2 ) ( 1 2 ) ( 3 2 ) ( 1 2 ) = 1 2 = (\frac {\sqrt{3}} {2} )( \frac {1} {\sqrt{2}}) + (\frac {1} {2} )( \frac {1}{\sqrt{2}}) + (\frac {1} {2} )( \frac {1}{\sqrt{2}} ) - (\frac {\sqrt{3}} {2} )( \frac {1} {\sqrt{2}}) = \boxed {\frac {1}{\sqrt{2}}}

Chew-Seong Cheong - 6 years, 6 months ago
Kathleen Kasper
Dec 8, 2014

Let\quad sin105°+cos105°=x <hr>Then(sin105°+cos105°)²=x²\ sin²105°+2sin105°cos105°+cos²105°=x²\ 1+sin(2*105°)=x²\ 1+sin210°=x²\ 1/2=x²\ x=+-sqrt(1/2)

Let's use the identity sin a + cos a = 2 sin ( a + 4 5 ) \sin a+\cos a=\sqrt{2}\sin(a+45^\circ) :

sin 10 5 + cos 10 5 = 2 sin 15 0 = 1 2 \sin 105^\circ + \cos 105^\circ=\sqrt{2}\sin 150^\circ=\frac{1}{\sqrt{2}}

sin105 + cos105 = sin(15 + 90) + cos(15+90) = cos(15) - sin(15) = 1/sqrt2

Farouk Yasser
Dec 8, 2014

sin(105) + cos(105) = x

(sin(105) + cos(105))^2 = x^2

sin^2(105) + 2cos(105)sin(105) + cos^2(105) = x^2 (1)

.....................

sin^2(105) + cos^2(105) = 1

2cos(105)sin(105) = sin(210) = -sin(30)

Writing 1 again becomes:

1 - sin(30) = X^2

1 - 1/2 = x^2

x = 1/rooot 2

Jitesh Mittal
Dec 8, 2014

We can do it directly just by looking at options:

Sin 105 lies between 0 to 1

Cos 105 lies between 0 to -1

=> Sin105+Cos105 lies between -1 to 1

Only one option satisfies it so answer becomes 1/ sqrt2

We can also do it by calculating sin 105 and cos 105 and then adding them as shown in other solutions.

Istiak Reza
Dec 1, 2014

There are many ways to solve it...... sin 105°+ cos 105° =sin ( 90°+ l5°) + cos 1O5° = cos 15°+ cos 105° = 2 cos( ( 105° +15°)/ 2) cos( ( 105°-l5°) / 2) = 2 cos 6o° cos45° = 2X 1/2 x 1 / sqrt 2 = 1 / sqrt 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...