Regrouping makes it easier

Algebra Level 3

( 2 n 1 ) ( 1 ) + ( 2 n 3 ) ( 2 ) + ( 2 n 5 ) ( 3 ) + ( 2 n 7 ) ( 4 ) + (2n-1)(1) + (2n-3)(2) + (2n-5)(3) + (2n-7)(4) + \cdots

What is the sum of all the positive terms of the expression above when n = 60 ? n=60 ?


The answer is 73810.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Saya Suka
Apr 16, 2021

Sum of { [2 × 60 – (2k – 1)] × k }
= Sum of { [121 – 2k] × k }
= Sum of { 121k – 2k² }

121 – 2k > 0, k < 60.5
k = [ 1 , 60 ]

Sum of { 121k – 2k² } for 1 ≤ k ≤ 60
= 121 × [k(k+1)/2] – 2 × [k(k+1)(2k+1)/6]
= k(k + 1) × [ 121/2 – (2k + 1)/3 ]
= 60 × 61 × [ 121/2 – 121/3 ]
= 73810

Chew-Seong Cheong
Apr 17, 2021

When n = 60 n=60 , the sum of positive terms becomes:

S = 119 1 + 117 2 + 115 3 + + 1 60 = k = 1 60 ( 121 2 k ) k = 121 k = 1 60 k 2 k = 1 60 k 2 = 121 60 61 2 2 60 61 121 6 = 60 61 121 ( 1 2 1 3 ) = 10 61 121 = 73810 \begin{aligned} S & = 119 \cdot 1 + 117 \cdot 2 + 115 \cdot 3 + \cdots + 1 \cdot 60 \\ & = \sum_{k=1}^{60} (121-2k)k \\ & = 121 \sum_{k=1}^{60} k - 2 \sum_{k=1}^{60} k^2 \\ & = 121 \cdot \frac {60\cdot 61}2 - 2 \cdot \frac {60 \cdot 61 \cdot 121}6 \\ & = 60 \cdot 61 \cdot 121 \left( \frac 12 - \frac 13 \right) \\ & = 10 \cdot 61 \cdot 121 \\ & = \boxed{73810} \end{aligned}

T C Adityaa
Apr 17, 2021

T h e s e r i e s c a n b e w r i t t e n a s : 2 n 1 2 n 3 + 2 n 3 2 n 5 + 2 n 5 + 2 n 5 . . . . . . . . . 5 + 5 + 5 + . . . . . . + 5 n-2 times 3 + 3 + 3 + . . . . . . + 3 + 3 n-1 times 1 + 1 + 1 + . . . . . . + 1 + 1 + 1 n times n 2 + ( n 1 ) 2 + ( n 2 ) 2 + . . . . . . + 3 2 + 2 2 + 1 2 A d d i n g c o l u m n w i s e , w e g e t t h e s u m o f c o n s e c u t i v e o d d n u m b e r s i n e a c h c o l u m n . A s t h e s u m o f t h e f i r s t k o d d n u m b e r s i s k 2 , t h e p r o b l e m r e d u c e s t o f i n d i n g t h e s u m o f t h e f i r s t n s q u a r e s . H e n c e , t h e s u m i s ( n ( n + 1 ) ( 2 n + 1 ) ) / 6. P l u g g i n g i n n = 60 , w e g e t 73810. \begin{array}{l}The\ series\ can\ be\ written\ as:\\ 2n-1\\ 2n-3\ \ \ +\ \ \ 2n-3\ \ \\ 2n-5\ \ \ +\ \ \ 2n-5\ \ \ +\ \ \ 2n-5\\ ...\\ ...\\ ...\\ \ \ \ \overbrace{5\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ 5\ \ \ \ \ \ \ +\ \ \ \ \ \ 5\ \ \ \ \ \ \ \ +......+\ \ \ \ 5}^\text{n-2 times}\ \ \ \ \ \ \\ \ \ \\\overbrace{\ \ \ 3\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ +\ \ \ \ \ \ 3\ \ \ \ \ \ \ \ +......+\ \ \ \ 3\ \ \ \ \ +\ \ \ \ \ 3}^\text{n-1 times}\\ \ \ \ \overbrace{1\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ 1\ \ \ \ \ \ \ \ +......+\ \ \ \ 1\ \ \ \ \ +\ \ \ \ \ 1\hspace{0.5cm}+\hspace{0.5cm}1 }^\text{n times}\\\rule{13cm}{0.01cm}\\ \ \ \ n^2\ \ \ \ \ \ \ \ +\ \ (n-1)^2\ +\ (n-2)^2 +......+\ \ \ \ 3^2\ \ \ +\ \ \ \ \ 2^2\ \ \ +\ \ \ \ 1^2\\Adding\ \ columnwise,\ \ we\ \ get\ \ the\ \ sum\ \ of\ \ consecutive\ \ odd\ \ numbers\ \ in\ \ each\ \ column.\\As\ \ the\ \ sum\ \ of\ \ the\ \ first\ \ k\ \ odd\ \ numbers\ \ is\ \ k^2,\ \ the\ \ problem\ \ reduces\ \ to\ \ finding\ \ the\ \ sum\ \ of\ \ the \ \ first\ \ n\ \ squares.\\Hence,\ \ the\ \ sum\ \ is\ \ (n(n+1)(2n+1))/6.\\Plugging\ \ in\ \ n=60,\ \ we\ \ get\ \ 73810. \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...