Think De Moivre

Geometry Level 2

Let a a and b b be positive integers such that 1 cos ( 8 0 ) + i sin ( 8 0 ) \dfrac1{\cos(80^\circ) + i \sin(80^\circ) } can be written in the form of cos ( a ) i sin ( b ) \cos(a) - i \sin(b) , where a a and b b are minimized, calculate a b a - b .

Note : Angles are measured in degrees.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Michael Fuller
Feb 13, 2016

1 cos ( 80 ° ) + i sin ( 80 ° ) = ( 1 cos ( 80 ° ) + i sin ( 80 ° ) ) ( cos ( 80 ° ) i sin ( 80 ° ) cos ( 80 ° ) i sin ( 80 ° ) ) = cos ( 80 ° ) i sin ( 80 ° ) cos 2 ( 80 ° ) + sin 2 ( 80 ° ) = cos ( 80 ° ) i sin ( 80 ° ) \cfrac { 1 }{ \cos { \left( 80° \right) } +i\sin { \left( 80° \right) } } \\ =\left( \cfrac { 1 }{ \cos { \left( 80° \right) } +i\sin { \left( 80° \right) } } \right) \left( \cfrac { \cos { \left( 80° \right) } -i\sin { \left( 80° \right) } }{ \cos { \left( 80° \right) } -i\sin { \left( 80° \right) } } \right) \\ =\cfrac { \cos { \left( 80° \right) } -i\sin { \left( 80° \right) } }{ \cos ^{ 2 }{ \left( 80° \right) } +\sin ^{ 2 }{ \left( 80° \right) } } \\ =\cos { \left( 80° \right) } -i\sin { \left( 80° \right) }

Therefore a = b = 80 ° a b = 0 a=b=80° \Rightarrow a-b= \large \color{#20A900}{\boxed{0}}

Mateus Gomes
Feb 12, 2016

cos ( 4 π 9 ) + i sin ( 4 π 9 ) = e ( i 4 π 9 ) \cos(\frac{4\pi}{9})+i\sin(\frac{4\pi}{9})=\large{e}^{(\frac{i4\pi}{9})} 1 cos ( 4 π 9 ) + i sin ( 4 π 9 ) = [ e ( i 4 π 9 ) ] 1 = e ( i 4 π 9 ) = cos ( 4 π 9 ) i s i n ( 4 π 9 ) \frac{1}{\cos(\frac{4\pi}{9})+i\sin(\frac{4\pi}{9})}=\Large[{e}^{(\frac{i4\pi}{9})}]^{-1}=\Large{e}^{-(\frac{i4\pi}{9})}=\cos(\frac{4\pi}{9})-isin(\frac{4\pi}{9}) A B = 0 A-B=\color{#3D99F6}{\boxed{\Large 0}}

Somyaneel Sinha
Feb 14, 2016

To define a complex no. with modulus 1 a must be equal to b.

why must a=b?

Pi Han Goh - 5 years, 3 months ago

Log in to reply

surely that must be its argument and the answer must appear as cosx +isinx thus a-b = x-x =0

Somyaneel Sinha - 5 years, 3 months ago
. .
Feb 25, 2021

1 cos ( 80 ° ) + i sin ( 80 ° ) = 1 × cos ( 80 ° ) + i sin ( 80 ° ) cos ( a ) i sin ( b ) a = 80 , b = 80 a b = 80 80 = 0 . \displaystyle \frac { 1 } { \cos ( 80 \degree ) + i \sin ( 80 \degree ) } = 1 \times \cos ( 80 \degree ) + i \sin ( 80 \degree ) \rightarrow \cos ( a ) - i \sin ( b ) \rightarrow a = 80, b = 80 \rightarrow a - b = 80 - 80 = \boxed { 0 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...