Let t n denote the product of consecutive integers, t n = ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) .
Let r = t 5 + t 6 + ⋯ + t 2 3 .
Find 7 ! r .
Notation:
!
is the
factorial
notation. For example,
8
!
=
1
×
2
×
3
×
⋯
×
8
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
t ( n ) = 7 ! n + 2 C n − 5
∑ n = 5 2 3 t ( n ) = α × 7 ! = 7 ! ∑ n = 5 2 3 ( n − 5 n + 2 ) = 7 ! ( 1 8 2 6 )
Nice solution
We write t n = f(n)*7!. The coefficients can be calculated from the relation: (n - 5)! * t n = (n + 2)!. Then f(n + 1) = f(n)*(n + 3)/(n - 4). Then sum from n = 5 to n =22. f(5) = 1. answer is 1562275. Ed Gray
7 ! ∗ t ( 5 ) = 7 ! , . . . . . . 7 ! ∗ t ( 6 ) = 8 ! / 1 ! , . . . . . . 7 ! ∗ t ( 7 ) = 9 ! / 2 ! , . . . ∴ t ( n ) = ( n − 5 ) ! ∗ 7 ! ( n + 2 ) ! . n = 5 ∑ 2 3 t ( n ) = 1 5 6 2 2 7 5 .
Problem Loading...
Note Loading...
Set Loading...
t ( n ) = ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 )
t ( n ) = 8 ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( 8 )
t ( n ) = 8 ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( ( n + 3 ) − ( n − 5 ) )
Say f ( n ) = ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) and f ( n + 1 ) = ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( n + 3 )
Then t ( n ) can be written as: t ( n ) = 8 f ( n + 1 ) − f ( n )
Now evaluating the sum, we get t ( 5 ) + t ( 6 ) + t ( 7 ) + t ( 8 ) + t ( 9 ) + . . . . . + t ( 2 3 ) = r = 8 f ( 2 4 ) − f ( 5 ) ,
Now f ( 5 ) = 0 and f ( 2 4 ) = 2 6 ∗ 2 5 ∗ 2 4 ∗ 2 3 ∗ 2 2 ∗ 2 1 ∗ 2 0 ∗ 1 9 So r / 7 ! = 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 2 6 ∗ 2 5 ∗ 2 4 ∗ 2 3 ∗ 2 2 ∗ 2 1 ∗ 2 0 ∗ 1 9 = 1 5 6 2 2 7 5