An algebra problem by Nivedit Jain

Algebra Level 4

Let t n t_n denote the product of consecutive integers, t n = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) t_n = (n-4)(n-3)(n-2)(n-1)(n) (n+1)(n+2) .

Let r = t 5 + t 6 + + t 23 r = t_5 + t_6 + \cdots + t_{23} .

Find r 7 ! \dfrac{ r}{7!} .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 1562275.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

t ( n ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) t(n) = (n-4)(n-3)(n-2)(n-1)(n)(n+1)(n+2)

t ( n ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( 8 ) 8 t(n) = \frac{(n-4)(n-3)(n-2)(n-1)(n)(n+1)(n+2)(8)}{8}

t ( n ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( ( n + 3 ) ( n 5 ) ) 8 t(n) = \frac{(n-4)(n-3)(n-2)(n-1)(n)(n+1)(n+2)((n+3)-(n-5))}{8}

Say f ( n ) = ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) f(n) = (n-5)(n-4)(n-3)(n-2)(n-1)(n)(n+1)(n+2) and f ( n + 1 ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( n + 3 ) f(n+1) = (n-4)(n-3)(n-2)(n-1)(n)(n+1)(n+2)(n+3)

Then t ( n ) t(n) can be written as: t ( n ) = f ( n + 1 ) f ( n ) 8 t(n)=\frac{f(n+1)-f(n)}{8}

Now evaluating the sum, we get t ( 5 ) + t ( 6 ) + t ( 7 ) + t ( 8 ) + t ( 9 ) + . . . . . + t ( 23 ) = r = f ( 24 ) f ( 5 ) 8 t(5) + t(6) + t(7) + t(8) + t(9) + ..... + t(23) = r=\frac{f(24)-f(5)}{8} ,

Now f ( 5 ) = 0 f(5)=0 and f ( 24 ) = 26 25 24 23 22 21 20 19 f(24)=26*25*24*23*22*21*20*19 So r / 7 ! = 26 25 24 23 22 21 20 19 8 7 6 5 4 3 2 1 = 1562275 r/{7!}=\frac{26*25*24*23*22*21*20*19}{8*7*6*5*4*3*2*1}=1562275

Rohith M.Athreya
Mar 1, 2017

t ( n ) = 7 ! n + 2 C n 5 \large t(n)=7!^{n+2}C_{n-5}

n = 5 23 t ( n ) = α × 7 ! = 7 ! n = 5 23 ( n + 2 n 5 ) = 7 ! ( 26 18 ) \large \sum_{n=5}^{23} t(n) = \alpha \times 7! = 7! \sum_{n=5}^{23} \binom{n+2}{n-5} = 7!\binom{26}{18}

Nice solution

Sudhamsh Suraj - 4 years, 3 months ago

Log in to reply

thank you :)

Rohith M.Athreya - 4 years, 3 months ago
Edwin Gray
Jun 14, 2018

We write t n = f(n)*7!. The coefficients can be calculated from the relation: (n - 5)! * t n = (n + 2)!. Then f(n + 1) = f(n)*(n + 3)/(n - 4). Then sum from n = 5 to n =22. f(5) = 1. answer is 1562275. Ed Gray

7 ! t ( 5 ) = 7 ! , . . . . . . 7 ! t ( 6 ) = 8 ! / 1 ! , . . . . . . 7 ! t ( 7 ) = 9 ! / 2 ! , . . . t ( n ) = ( n + 2 ) ! ( n 5 ) ! 7 ! . n = 5 23 t ( n ) = 1562275. 7!*t(5)=7!,......7!*t(6)=8!/1!,......7!*t(7)=9!/2!, . . .\\ \therefore~t(n)=\dfrac{(n+2)!}{(n-5)!*7!}.\\ \displaystyle \sum_{n=5}^{23} t(n)=1562275.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...