Think logic 1

If a b c 3 = 2 \sqrt[3]{abc} = 2 , where a , b , c a,b,c are distinct positive integers, then what is the value of a + b + c a+b+c ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Pianate Nate
Jul 8, 2016

∛abc = 2, a+b+c = ?. abc = 8 (Cube both sides). Since a,b,c are integers, we can find the solution just finding the possible factors of 8 which are: 1,1,8 1,2,4 2,2,2 .Since a,b,c must be distinct (different), the only choice would be 1,2,4. Therefore 1+2+4 = 7

Looks like you have a typo in the question.... You wrote a b c abc instead of a b c 3 \sqrt[3]{abc}

Rishabh Jain - 4 years, 11 months ago
Ashish Menon
Jul 13, 2016

a b c 3 = 2 a b c = 8 = 1 × 2 × 4 a + b + c = 1 + 2 + 4 = 7 \begin{aligned} \sqrt[3]{abc} & = 2\\ abc & = 8\\ & = 1×2×4\\ \implies a+b+c & = 1+2+4\\ & = \color{#3D99F6}{\boxed{7}} \end{aligned}

smart solution ;)

Kandarp Singh - 4 years, 10 months ago

Log in to reply

Thanks! :)

Ashish Menon - 4 years, 10 months ago
Kandarp Singh
Jul 19, 2016

L e t u s c o n s i d e r t h r e e n o a , b , c . A l l t h r e e n u m b e r s a r e p o s i t i v e a n d d i s t i n c t s o , B y A . M > G . M a + b + c 3 > a b c 3 B y s u b s t i t u t i n g t h e v a l u e g i v e n a + b + c 3 > 2 a + b + c > 6 H e n c e a n s w e r i s 7 \quad Let\quad us\quad consider\quad three\quad no\quad a,b,c.\\ \quad All\quad three\quad numbers\quad are\quad positive\quad and\quad distinct\\ \quad so,\quad \\ \quad \quad By\quad A.M>G.M\\ \quad \frac { a+b+c }{ 3 } >\sqrt [ 3 ]{ abc } \\ \quad By\quad substituting\quad the\quad value\quad given\\ \quad \frac { a+b+c }{ 3 } >2\quad \\ \quad \Rightarrow a+b+c>6\\ Hence\quad answer\quad is\quad \boxed { 7 }

By knowing the fact that a+b+c>6,how can you conclude that a+b+c=7?You should justify your answer.

Anandmay Patel - 4 years, 10 months ago

Log in to reply

it is mentioned that a,b,c are positive distinct inergers

Kandarp Singh - 4 years, 10 months ago

a b c 3 = 2 a b c = 8 a b c = 1 4 2 a + b + c = 1 + 4 + 2 a + b + c = 7 \sqrt [ 3 ]{ abc } =2\\ abc=8\\ a\cdot b\cdot c=1\cdot 4\cdot 2\\ a+b+c=1+4+2\\ a+b+c=7

Nikhesh Kumar
Jul 12, 2016

The integers a,b,c are distinct. So the set of numbers--1,2,4is the only possible answer.so 1+2+4=7.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...