A geometry problem by Nivedit Jain

Geometry Level 4

{ sin a + sin b = 2 2 cos a + cos b = 6 2 \large \begin{cases} \sin a + \sin b = \dfrac {\sqrt 2}2 \\ \cos a + \cos b = \dfrac {\sqrt 6}2 \end{cases}

Real values a a and b b satisfy the system of equation above. Find sin ( a + b ) \sin (a+b) to 3 decimal places.


The answer is 0.866.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Mar 9, 2017

Relevant wiki: Sum and Difference Formulas

If sin a + sin b = 1 2 \sin a + \sin b = \dfrac{1}{\sqrt{2}} so we can write as 2 sin ( a + b 2 ) cos ( a b 2 ) = 1 2 2 \sin(\dfrac{a+b}{2}) \cos(\dfrac{a-b}{2}) = \dfrac{1}{\sqrt{2}} ... (I)

Now again in 2nd equation cos a + cos b = 3 2 \cos a + \cos b = \sqrt{\dfrac{3}{2}} or 2 cos ( a + b 2 ) cos ( a b 2 ) = 3 2 2 \cos (\dfrac{a+b}{2}) \cos(\dfrac{a-b}{2}) = \sqrt{\dfrac{3}{2}} ...(II)

Now ,

I I I = tan ( a + b 2 ) \dfrac{I}{II} = \tan(\dfrac{a+b}{2}) = 1 3 \sqrt{\dfrac{1}{3}}

So a + b 2 = 3 0 o \dfrac{a+b}{2} = 30^{o} or a + b = 6 0 o a+b = 60^{o}

So sin ( a + b ) = sin 6 0 o = 3 2 \sin(a+b) = \sin 60^{o} = \dfrac{\sqrt{3}}{2} = 0.866 \boxed{0.866}

Hm, why is that the only possible solution of (a+b)/2?

Calvin Lin Staff - 4 years, 3 months ago

Extra for you try to solve it using complex numbers

Nivedit Jain - 4 years, 2 months ago
Ravneet Singh
Mar 12, 2017

If we square and add both the given equations, we get

sin 2 a + cos 2 a + s i n 2 b + cos 2 b + 2 ( sin a cos a + sin b cos b ) = 2 \large \sin^{2}a + \cos^{2}a + sin^{2}b + \cos^{2}b + 2(\sin a \cos a + \sin b \cos b) = 2

2 + 2 ( sin a cos a + sin b cos b ) = 2 \Longrightarrow \large 2 + 2(\sin a \cos a + \sin b \cos b) = 2

sin a cos a + sin b cos b = 0 \Longrightarrow \large \sin a \cos a + \sin b \cos b = 0

If we multiply both the given equations, we get

sin a cos b + cos a sin b + sin a cos a + sin b cos b \large \sin a \cos b + \cos a \sin b + \sin a \cos a + \sin b \cos b = 3 2 \dfrac{\sqrt 3}{2} = 0.866 \large 0.866

sin a cos b + cos a sin b + 0 \Longrightarrow \large \sin a \cos b + \cos a \sin b + 0 = 0.866 \large 0.866

sin ( a + b ) = 0.866 \Longrightarrow \large \sin (a+b) = 0.866

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...