Forever Sine

Geometry Level 3

sin 2 θ + sin θ = 1 \sin^2 \theta + \sin \theta = 1

Given the above equation, state the expression below in terms of θ \theta

sin 6 θ + sin 5 θ + sin 4 θ + sin 3 θ + sin 2 θ + sin θ \sin^{6} \theta + \sin^{5} \theta + \sin^{4} \theta + \sin^{3} \theta + \sin^{2} \theta + \sin \theta

1 0 1 cos 2 θ 1 - \cos^2 \theta 2 2 sin 2 θ cos 2 θ 2 - 2 \sin^2\theta \cos^2\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using the given equation sin 2 ( θ ) + sin ( θ ) = 1 \sin^{2}(\theta) + \sin(\theta) = 1 we have that

n = 1 6 sin n ( θ ) = ( sin 2 ( θ ) + sin ( θ ) ) ( sin 4 ( θ ) + sin 2 ( θ ) + 1 ) = \sum_{n=1}^{6} \sin^{n}(\theta) = (\sin^{2}(\theta) + \sin(\theta))(\sin^{4}(\theta) + \sin^{2}(\theta) + 1) =

sin 4 ( θ ) + sin 2 ( θ ) + 1 = sin 4 ( θ ) + ( 1 sin 2 ( θ ) ) 2 + 1 = \sin^{4}(\theta) + \sin^{2}(\theta) + 1 = \sin^{4}(\theta) + (1 - \sin^{2}(\theta))^{2} + 1 =

2 2 sin 2 ( θ ) ( 1 sin 2 ( θ ) ) = 2 2 sin 2 ( θ ) cos 2 ( θ ) . 2 - 2\sin^{2}(\theta)(1 - \sin^{2}(\theta)) = \boxed{2 - 2\sin^{2}(\theta)\cos^{2}(\theta)}.

Sakanksha Deo
Mar 12, 2015

Given that,

s i n 2 θ + s i n θ = 1 \large sin^2 \theta + sin \theta = 1

s i n θ = 1 s i n 2 θ = c o s 2 θ \large \Rightarrow sin \theta = 1 - sin^2 \theta = cos^2 \theta

Now.,

s i n 6 θ + s i n 5 θ + s i n 4 θ + s i n 3 θ + s i n 2 θ + s i n θ \large sin^{6} \theta + sin^{5} \theta + sin^{4} \theta + sin^{3} \theta + sin^{2} \theta + sin \theta

= s i n 6 θ + s i n 5 θ + s i n 4 θ + c o s 6 θ + s i n 2 θ + c o s 2 θ = \large sin^6 \theta + sin^5 \theta + sin^4 \theta + cos^6 \theta + sin^2 \theta + cos^2 \theta

= ( s i n 2 θ + c o s 2 θ ) ( s i n 4 θ s i n 2 θ c o s 2 θ + c o s 4 θ ) + s i n 5 θ + s i n 4 θ + 1 = ( \large sin^2 \theta + cos^2 \theta ) ( sin^4 \theta - sin^2 \theta cos^2 \theta + cos^4 \theta ) + sin^5 \theta + sin^4 \theta + 1

= s i n 4 θ s i n 3 θ + c o s 4 θ + s i n 5 θ + s i n 4 θ + 1 = \large sin^4 \theta - sin^3 \theta + cos^4 \theta + sin^5 \theta + sin^4 \theta + 1

= ( s i n 2 θ + c o s 2 θ ) 3 s i n 3 θ + s i n 5 θ + s i n 4 θ + 1 = ( \large sin^2 \theta + cos^2 \theta ) - 3 sin^3 \theta + sin^5 \theta + sin^4 \theta + 1

= s i n 4 θ + s i n 3 θ ( s i n 2 θ 3 ) + 2 =\large sin^4 \theta + sin^3 \theta ( sin^2 \theta - 3 ) + 2

= s i n 4 θ + s i n 3 θ ( 2 c o s 2 θ ) + 2 = \large sin^4 \theta + sin^3 \theta ( - 2 - cos^2 \theta ) + 2

= s i n 4 θ s i n 4 θ 2 c o s 2 θ s i n 2 θ + 2 = \large sin^4 \theta - sin^4 \theta - 2 cos^2 \theta sin^2 \theta + 2

= 2 2 s i n 2 θ c o s 2 θ = \large 2 - 2 sin^2 \theta cos^2 \theta

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...