Solve the differential equation below.
⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ y ′ ′ ′ + 6 y ′ ′ + 1 1 y ′ + 6 y y ( 0 ) y ′ ( 0 ) y ′ ′ ( 0 ) = 2 6 0 ( sin ( 2 t ) + 3 cos ( 2 t ) ) = − 3 3 = 2 6 = 1 4 2
If y ( 2 π ) = A e − 2 π + B e − π + C e − 2 3 π + D , where A , B , C and D are integers, enter A + B + C + D .
Hint: x 3 + 6 x 2 + 1 1 x + 6 = ( x + 1 ) ( x + 2 ) ( x + 3 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution of the given differential equation is y = 1 2 sin ( 2 t ) − 3 4 cos ( 2 t ) + A e − t + B e − 2 t + C e − 3 t . Substituting the initial conditions we get, A = 1 1 , B = − 1 7 , C = 7 . Hence y ( 2 π ) = 3 4 + 1 1 e − 2 π − 1 7 e − π + 7 e − 2 3 π . Therefore D = 3 4 and A + B + C + D = 1 1 − 1 7 + 7 + 3 4 = 3 5 .
Problem Loading...
Note Loading...
Set Loading...
The partial solution of homogeneous form of the differential equation is given by:
y ′ ′ ′ + 6 y ′ ′ + 1 1 y ′ + 6 y ( r + 1 ) ( r + 2 ) ( r + 3 ) e r x = 0 = 0
⟹ y 1 ( x ) = c 1 e − x + c 2 e − 2 x + c 3 e − 3 x where c 1 , c 2 , c 3 are constants.
Let the special solution be y 2 ( x ) = c 4 sin 2 x + c 5 cos 2 x , where c 4 and c 5 are constants. Then
y 2 ′ ′ ′ + 6 y 2 ′ ′ + 1 1 y 2 ′ + 6 y 2 ( − 1 8 c 4 − 1 4 c 5 ) sin 2 x + ( 1 4 c 4 − 1 8 c 5 ) cos 2 x = 2 6 0 ( sin 2 x + 3 cos 2 x ) = 2 6 0 sin 2 x + 7 8 0 cos 2 x
Equating the coefficients ⟹ { − 9 c 4 − 7 c 5 = 1 3 0 7 c 4 − 9 c 5 = 3 9 0 ⟹ { c 4 = 1 2 c 5 = − 3 4
⟹ y 2 ( x ) = 1 2 sin 2 x − 3 4 cos 2 x and the general solution:
y ( x ) y ( 0 ) y ′ ( 0 ) y ′ ′ ( 0 ) = c 1 e − x + c 2 e − 2 x + c 3 e − 3 x + 1 2 sin 2 x − 3 4 cos 2 x = c 1 + c 2 + c 3 − 3 4 = − 3 3 = − c 1 − 2 c 2 − 3 c 3 + 2 4 = 2 6 = c 1 + 4 c 2 + 9 c 3 + 1 3 6 = 1 4 2 ⟹ c 1 + c 2 + c 3 = 1 ⟹ c 1 + 2 c 2 + 3 c 3 = − 2 ⟹ c 1 + 4 c 2 + 9 c 3 = 6
Solving ⎩ ⎪ ⎨ ⎪ ⎧ c 1 + c 2 + c 3 = 1 c 1 + 2 c 2 + 3 c 3 = − 2 c 1 + 4 c 2 + 9 c 3 = 6 ⟹ ⎩ ⎪ ⎨ ⎪ ⎧ c 1 = 1 1 c 2 = − 1 7 c 3 = 7
⟹ y ( x ) y ( 2 π ) = 1 1 e − x − 1 7 e − 2 x + 7 e − 3 x + 1 2 sin 2 x − 3 4 cos 2 x = 1 1 e − 2 π − 1 7 e − π + 7 e − 2 2 π + 3 4
Therefore A + B + C + D = 1 1 − 1 7 + 7 + 3 4 = 3 5 .