Third order differential equation

Calculus Level 4

Solve the differential equation below.

{ y + 6 y + 11 y + 6 y = 260 ( sin ( 2 t ) + 3 cos ( 2 t ) ) y ( 0 ) = 33 y ( 0 ) = 26 y ( 0 ) = 142 \begin{cases} \begin{aligned} y'''+6y''+11y'+6y & =260 \big(\sin(2t)+3\cos(2t)\big) \\ y(0)& =-33 \\ y'(0)& =26 \\ y''(0)& =142 \end{aligned} \end{cases}

If y ( π 2 ) = A e π 2 + B e π + C e 3 π 2 + D y \left(\frac{\pi}{2}\right)=Ae^{-\frac{\pi}{2}}+Be^{-\pi}+Ce^{-\frac{3\pi}{2}}+D , where A , B , C A,B,C and D D are integers, enter A + B + C + D A+B+C+D .

Hint: x 3 + 6 x 2 + 11 x + 6 = ( x + 1 ) ( x + 2 ) ( x + 3 ) x^3+6x^2+11x+6=(x+1)(x+2)(x+3)


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The partial solution of homogeneous form of the differential equation is given by:

y + 6 y + 11 y + 6 y = 0 ( r + 1 ) ( r + 2 ) ( r + 3 ) e r x = 0 \begin{aligned} y''' + 6y''+11y' + 6y & = 0 \\ (r+1)(r+2)(r+3)e^{rx} & = 0 \end{aligned}

y 1 ( x ) = c 1 e x + c 2 e 2 x + c 3 e 3 x where c 1 , c 2 , c 3 are constants. \begin{aligned} \implies y_1(x) & = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x} & \small \blue{\text{where }c_1, c_2, c_3 \text{ are constants.}} \end{aligned}

Let the special solution be y 2 ( x ) = c 4 sin 2 x + c 5 cos 2 x y_2(x) = c_4 \sin 2x + c_5 \cos 2x , where c 4 c_4 and c 5 c_5 are constants. Then

y 2 + 6 y 2 + 11 y 2 + 6 y 2 = 260 ( sin 2 x + 3 cos 2 x ) ( 18 c 4 14 c 5 ) sin 2 x + ( 14 c 4 18 c 5 ) cos 2 x = 260 sin 2 x + 780 cos 2 x \begin{aligned} y_2''' + 6y_2''+11y_2' + 6y_2 & = 260 (\sin 2x + 3\cos 2x) \\ (-18c_4 - 14c_5) \sin 2x + (14c_4 - 18c_5)\cos 2x & = 260 \sin 2x + 780 \cos 2x \end{aligned}

Equating the coefficients { 9 c 4 7 c 5 = 130 7 c 4 9 c 5 = 390 { c 4 = 12 c 5 = 34 \implies \begin{cases} -9c_4 - 7c_5 = 130 \\ 7c_4 - 9c_5 = 390 \end{cases} \implies \begin{cases} c_4 = 12 \\ c_5 = -34 \end{cases}

y 2 ( x ) = 12 sin 2 x 34 cos 2 x \implies y_2(x) = 12 \sin 2x - 34 \cos 2x and the general solution:

y ( x ) = c 1 e x + c 2 e 2 x + c 3 e 3 x + 12 sin 2 x 34 cos 2 x y ( 0 ) = c 1 + c 2 + c 3 34 = 33 c 1 + c 2 + c 3 = 1 y ( 0 ) = c 1 2 c 2 3 c 3 + 24 = 26 c 1 + 2 c 2 + 3 c 3 = 2 y ( 0 ) = c 1 + 4 c 2 + 9 c 3 + 136 = 142 c 1 + 4 c 2 + 9 c 3 = 6 \begin{aligned} y(x) & = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x} + 12 \sin 2x - 34 \cos 2x \\ y(0) & = c_1+c_2+c_3 - 34 = -33 & \small \blue{\implies c_1+c_2 + c_3 = 1} \\ y'(0) & = -c_1-2c_2-3c_3 + 24 = 26 & \small \blue{\implies c_1+2c_2 + 3c_3 = -2} \\ y''(0) & = c_1+4c_2+9c_3 + 136 = 142 & \small \blue{\implies c_1+4c_2 + 9c_3 = 6} \end{aligned}

Solving { c 1 + c 2 + c 3 = 1 c 1 + 2 c 2 + 3 c 3 = 2 c 1 + 4 c 2 + 9 c 3 = 6 { c 1 = 11 c 2 = 17 c 3 = 7 \begin{cases} c_1+c_2 + c_3 = 1 \\ c_1+2c_2 + 3c_3 = -2 \\ c_1+4c_2 + 9c_3 = 6 \end{cases} \implies \begin{cases} c_1 = 11 \\ c_2 = - 17 \\ c_3 = 7\end{cases}

y ( x ) = 11 e x 17 e 2 x + 7 e 3 x + 12 sin 2 x 34 cos 2 x y ( π 2 ) = 11 e π 2 17 e π + 7 e 2 π 2 + 34 \begin{aligned} \implies y(x) & = 11 e^{-x} -17 e^{-2x} + 7 e^{-3x} + 12 \sin 2x - 34 \cos 2x \\ y\left(\frac \pi 2\right) & = 11 e^{-\frac \pi 2} -17 e^{-\pi} + 7 e^{-\frac {2\pi}2} + 34 \end{aligned}

Therefore A + B + C + D = 11 17 + 7 + 34 = 35 A+B+C+D = 11-17+7 + 34 = \boxed{35} .

Solution of the given differential equation is y = 12 sin ( 2 t ) 34 cos ( 2 t ) + A e t + B e 2 t + C e 3 t y=12\sin (2t)-34\cos (2t)+Ae^{-t}+Be^{-2t}+Ce^{-3t} . Substituting the initial conditions we get, A = 11 , B = 17 , C = 7 A=11, B=-17, C=7 . Hence y ( π 2 ) = 34 + 11 e π 2 17 e π + 7 e 3 π 2 y(\dfrac{π}{2})=34+11e^{-\dfrac{π}{2}}-17e^{-π}+7e^{-\dfrac{3π}{2}} . Therefore D = 34 D=34 and A + B + C + D = 11 17 + 7 + 34 = 35 A+B+C+D=11-17+7+34=\boxed {35} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...