This cannot be real!

Calculus Level 3

0 1 1 + tan 2 ( 2 arctan ( 1 + x 2 1 x ) ) d x = ? \int _{0}^{\infty} \frac{1}{1+ \tan^{2}\left(2\arctan\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\right)} dx = \ ?


The answer is 1.57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Dec 11, 2019

I = 0 1 1 + tan 2 ( 2 tan 1 ( 1 + x 2 1 x ) ) d x = 0 ( 1 + tan 2 ( tan 1 ( 2 ( 1 + x 2 1 x ) 1 ( 1 + x 2 1 x ) 2 ) ) ) 1 d x = 0 ( 1 + tan 2 ( tan 1 x ) ) 1 d x = 0 1 1 + x 2 d x = tan 1 x 0 = π 2 1.571 \begin{aligned} I & = \int_0^\infty \frac 1{1+\tan^2\left(2\tan^{-1}\left(\frac {\sqrt{1+x^2}-1}x\right)\right)} dx \\ & = \int_0^\infty \left(1+\tan^2 \left(\tan^{-1}\left(\frac {2\left(\frac {\sqrt{1+x^2}-1}x\right)}{1-\left( \frac {\sqrt{1+x^2}-1}x \right)^2}\right)\right)\right)^{-1} dx \\ & = \int_0^\infty \left(1+\tan^2 \left(\tan^{-1} x\right)\right)^{-1} dx \\ & = \int_0^\infty \frac 1{1+x^2} dx \\ & = \tan^{-1} x \ \bigg|_0^\infty = \frac \pi 2 \approx \boxed{1.571} \end{aligned}

Let x = tan α x=\tan α . Then d x = sec 2 α d α dx=\sec^2 αdα and the integrand is cos 2 α \cos^2 α . The limits of integration become 0 0 and π 2 \dfrac{π}{2} . So the value of the integral is π 2 \boxed {\dfrac{π}{2}}

Blan Morrison
Dec 11, 2019

Firstly, note that cos 2 θ = 1 tan 2 θ 1 + tan 2 θ 2 tan 1 x = cos 1 ( 1 x 2 1 + x 2 ) \cos 2\theta=\frac{1-\tan^2\theta}{1+\tan^2\theta} \implies 2\tan^{-1}x=\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) .

Knowing this and 1 + tan 2 x = sec 2 x 1+\tan^2x=\sec^2x , 1 1 + tan 2 ( 2 tan 1 ( 1 + x 2 1 x ) ) = 1 sec 2 ( cos 1 ( 1 ( 1 + x 2 1 x ) 2 1 + ( 1 + x 2 1 x ) 2 ) ) \frac{1}{1+\tan^2\left(2\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\right)}=\frac{1}{\sec^2\left(\cos^{-1}\left(\frac{1-\left(\frac{\sqrt{1+x^2}-1}{x}\right)^2}{1+\left(\frac{\sqrt{1+x^2}-1}{x}\right)^2}\right)\right)} = cos 2 ( cos 1 ( x 2 x 2 1 x 2 + 2 2 1 + x 2 x 2 1 + x 2 + 2 + 2 1 + x 2 x 2 ) ) =\cos^2\left(\cos^{-1}\left(\frac{x^2}{x^2}\cdot\frac{1-\frac{x^2+2-2\sqrt{1+x^2}}{x^2}}{1+\frac{x^2+2+2\sqrt{1+x^2}}{x^2}}\right)\right) = ( 1 + 1 + x 2 x 2 + 1 + 1 + x 2 ) 2 =\left(\frac{1+\sqrt{1+x^2}}{x^2+1+\sqrt{1+x^2}}\right)^2 = x 2 + 2 x 2 + 1 + 2 x 4 + 3 x 2 + 2 + 2 x 2 x 2 + 1 + 2 x 2 + 1 =\frac{x^2+2\sqrt{x^2+1}+2}{x^4+3x^2+2+2x^2\sqrt{x^2+1}+2\sqrt{x^2+1}}

We can use trigonometric substitution to integrate this monstrosity: x = tan θ ; d x = sec 2 θ d θ x=\tan\theta;~dx=\sec^2\theta d\theta arctan 0 = 0 ; lim x arctan x = π 2 \arctan0=0;~\displaystyle\lim_{x\rightarrow \infty}\arctan x=\frac{\pi}{2} 0 x 2 + 2 x 2 + 1 + 2 x 4 + 3 x 2 + 2 + 2 x 2 x 2 + 1 + 2 x 2 + 1 d x = 0 π 2 tan 2 θ + 2 sec θ + 2 tan 4 θ + 3 tan 2 θ + 2 + 2 tan 2 θ sec θ + 2 sec θ sec 2 θ d θ \ \displaystyle\int_{0}^{\infty}\frac{x^2+2\sqrt{x^2+1}+2}{x^4+3x^2+2+2x^2\sqrt{x^2+1}+2\sqrt{x^2+1}}dx=\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\tan^2\theta+2\sec\theta+2}{\tan^4\theta+3\tan^2\theta+2+2\tan^2\theta\sec\theta+2\sec\theta}\sec^2\theta~d\theta = 0 π 2 sec 2 θ + 2 sec θ + 1 ( tan 2 + 1 ) ( tan 2 + 2 ) + 2 sec θ ( tan 2 θ + 1 ) sec 2 θ d θ =\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\sec^2\theta+2\sec\theta+1}{(\tan^2+1)(\tan^2+2)+2\sec\theta(\tan^2\theta+1)}\sec^2\theta~d\theta = 0 π 2 ( sec θ + 1 ) 2 sec 2 θ ( sec 2 θ + 1 ) + sec 3 θ sec 2 θ d θ =\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{(\sec\theta+1)^2}{\sec^2\theta(\sec^2\theta+1)+\sec^3\theta}\sec^2\theta~d\theta = 0 π 2 ( sec θ + 1 ) 2 sec 2 θ + 1 + 2 sec θ d θ =\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{(\sec\theta+1)^2}{\sec^2\theta+1+2\sec\theta}d\theta = 0 π 2 ( sec θ + 1 ) 2 ( sec θ + 1 ) 2 d θ = 0 π 2 d θ = π 2 0 = π 2 =\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{(\sec\theta+1)^2}{(\sec\theta+1)^2}d\theta=\displaystyle\int_{0}^{\frac{\pi}{2}}d\theta=\frac{\pi}{2}-0=\boxed{\frac{\pi}{2}} β {\beta_{\lceil \mid \rceil}}

Karan Chatrath
Dec 10, 2019

Consider the expression:

A = 1 + x 2 1 x A = \frac{\sqrt{1+x^2}-1}{x}

Let x = tan t x = \tan{t} . This leads to:

A = sec t 1 tan t = 1 cos t sin t = 2 sin 2 ( t 2 ) 2 sin ( t 2 ) cos ( t 2 ) = tan ( t 2 ) tan ( 2 arctan A ) = tan t = x A = \frac{\sec{t}-1}{\tan{t}} = \frac{1-\cos{t}}{\sin{t}} = \frac{2\sin^2\left(\frac{t}{2}\right)}{2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)} = \tan\left(\frac{t}{2}\right) \implies \tan(2\arctan{A}) = \tan{t} = x

Using this, the integrand simplifies to:

I = 0 1 1 + x 2 d x I = \int_{0}^{\infty}\frac{1}{1+x^2}dx

Recall that x = tan t d x = sec 2 t d t x = \tan{t} \implies dx = \sec^2{t}dt and the integral transforms to:

I = 0 π 2 d t I = π 2 I = \int_{0}^{\frac{\pi}{2}}dt \implies \boxed{I = \frac{\pi}{2}}

Amal Hari
Dec 10, 2019

tan ( 2 arctan ( 1 + x 2 1 x ) ) = x \tan\left(2\arctan\left(\displaystyle\frac{\sqrt{1+x^{2}}-1}{x}\right)\right)=x

0 1 1 + x 2 d x = π 2 \displaystyle \int_{0}^{\infty}\frac{1}{1+x^{2}} dx =\frac{\pi}{2}

We can derive this by doing integration by parts on 1 1 + x 2 d x \displaystyle \int \frac{1}{1+x^{2}} dx

x 1 + x 2 + 2 x ( 1 + x 2 ) 2 d x = arctan x \displaystyle \frac{x}{1+x^{2}} +\int \frac{2x}{\left(1+x^{2}\right)^{2}}dx =\arctan x

By changing variables from x = tan θ x=\tan\theta and finding the anti-derivative and converting back to original variable and equating this integral with arctan x \arctan x we will get the following equation: sin ( 2 θ ) = 2 x 1 + x 2 \sin\left(2\theta\right)=\frac{2x}{1+x^{2}}

where θ = arctan x \theta =\arctan x from the variable change

arcsin ( 2 x 1 + x 2 ) = 2 arctan x \displaystyle \arcsin\left(\frac{2x}{1+x^{2}}\right)=2\arctan x

But we also know that arcsin x = arctan ( x 1 x 2 ) \displaystyle \arcsin x =\arctan\left(\frac{x}{\sqrt{1-x^{2}}}\right)

Using this two equations and rearranging variable we can arrive at the following equation tan ( 2 arctan ( 1 + x 2 1 x ) ) = x \tan\left(2\arctan\left(\displaystyle\frac{\sqrt{1+x^{2}}-1}{x}\right)\right)=x .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...