Simple Trigo

Geometry Level 3

Calculate tan 7 5 + tan 67. 5 2 3 \tan 75^\circ+\tan 67.5^\circ-\sqrt 2-\sqrt 3

Calculator usage is not allowed.


This is one part of 1+1 is not = to 3 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kenneth Tan
Jul 15, 2014

First draw A B C \triangle ABC where C = 9 0 \angle C=90^\circ , B = 3 0 \angle B=30^\circ . Extend line C B CB to D D so that B D = A B BD=AB .

D = D A B = 1 5 \angle D=\angle DAB=15^\circ

So D A C = 7 5 \angle DAC=75^\circ

Let A C = 1 AC=1 , then C D = B D + B C = A B + B C = 3 + 2 CD=BD+BC=AB+BC=\sqrt3+2

Hence tan 7 5 = 3 + 2 \tan 75^\circ=\sqrt3+2

Now draw E F G \triangle EFG where G = 4 5 \angle G=45^\circ , F = 4 5 \angle F=45^\circ . Extend line G F GF to H H so that F H = F E FH=FE .

So G E H = 67. 5 \angle GEH=67.5^\circ

Let E G = F G = 1 EG=FG=1 , then H G = 2 + 1 HG=\sqrt2+1

Hence tan 67. 5 = 2 + 1 \tan 67.5^\circ=\sqrt2+1

So, tan 7 5 + tan 67. 5 2 3 = 3 \tan 75^\circ+\tan 67.5^\circ-\sqrt2-\sqrt3=3

Adrien Salem
Dec 10, 2016

You can also do it using the double angles formulas for sine and cosine to figure out the tangents of these two angles but you first have to convert 75 and 67. 5 in radians

Ahmed El-Moneim
Oct 12, 2014

tan 75 = tan (45 +30) = tan 45 + tan 30 / ( 1 - tan45. tan30)

= 1 + (1/sqrt 3) / (1 - (1/sqrt 3 ))

= 2 + sqrt (3)

tan 135 = - tan 45 = -1

tan 135 = 2 tan 67.5 / 1 - (tan 67.5)^2

then

tan 67.5 = 1 + sqrt (2)

then

tan 75 + tan 67.5 - sqrt (2) - sqrt (3) = 1 + 2 = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...