This integral does not converge as x x \to \infty

Calculus Level 5

For x > 0 x > 0 , define f ( x ) f(x) as follows: f ( x ) = 0 x ( t 2 + 1 t ) d t . f(x) = \int_{0}^{x} \left( \sqrt{t^2+1} - t \right) \, dt. Let L = lim x ( f ( x ) ln x 2 ) . L = \displaystyle\lim_{x\to\infty} \left(f(x) - \dfrac{\ln x}{2}\right).

If L = a + ln b c L = \dfrac{a + \ln{b}}{c} for positive integers a , b , a, b, and c c with gcd ( a , c ) = 1 \gcd(a,c) = 1 , then find the value of a + b + c a + b + c .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Nov 28, 2016

Integrating 0 x 1 + t 2 d t \displaystyle\int_{0}^{x}\sqrt{1+t^2}dt by parts results in 1 2 ( x 1 + x 2 ln ( 1 + x 2 x ) ) \displaystyle \frac{1}{2}\big(x \sqrt{1+x^2}-\ln{(\sqrt{1+x^2}-x) \big)} . Thus,

f ( x ) ln x 2 = 1 2 ( x 1 + x 2 ln ( 1 + x 2 x ) x 2 ln x ) = 1 2 ( x 1 + x 2 x 2 ln ( x 1 + x 2 x 2 ) ) f(x) - \frac{ \ln x } { 2 } = \displaystyle\frac{1}{2}\big( x \sqrt{1+x^2}- \ln{( \sqrt{1+x^2}-x)} -x^2- \ln{x} \big) \\ = \displaystyle\frac{1}{2}\big( x \sqrt{1+x^2}- x^2 - \ln{(x \sqrt{1+x^2}-x^2)} \big)

Let g ( x ) = x 1 + x 2 x 2 g(x) = x \sqrt{ 1 + x^2} - x^2 , then f ( x ) ln x 2 = g ( x ) ln g ( x ) 2 f(x) - \frac{ \ln x } { 2 } = \frac{ g(x) - \ln g(x) } { 2 } .

We seek to find the limit of g ( x ) g(x) by rewriting g(x) as lim x g ( x ) = lim x 1 + 1 x 2 1 1 x 2 \displaystyle\lim_{x\to\infty}g(x) = \lim_{x\to\infty} \frac{\sqrt{1+\frac{1}{x^2}}-1}{\frac{1}{x^2}} . By applying L'Hopital's Rule, we obtain

lim x 1 x 3 1 + 1 x 2 2 x 3 = 1 2 \lim_{x\to\infty}\frac{\frac{-1}{x^3\sqrt{1+\frac{1}{x^2}}}}{\frac{-2}{x^3}} = \frac{1}{2}

Hence, lim x f ( x ) ln x 2 = 1 2 × ( 1 2 ln 1 2 ) = 1 + ln 4 4 \lim_{x\rightarrow \infty } f(x) - \frac{ \ln x } { 2 } = \displaystyle\frac{1}{2}\times\big( \frac{1}{2}-\ln{\frac{1}{2}}\big) = \frac{1+\ln{4}}{4} .

Nice solution! However you don't need L'Hopital's rule:

lim x ( x x 2 + 1 x 2 ) = lim x x x 2 + 1 + x = lim x 1 1 + 1 x 2 + 1 = 1 2 \begin{aligned} \lim_{x\to\infty} \left(x\sqrt{x^2+1} - x^2\right) & = \lim_{x\to\infty}\dfrac{x}{\sqrt{x^2+1}+x} \\ & = \lim_{x\to\infty} \dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1 } \\ & = \dfrac{1}{2} \end{aligned}

Ariel Gershon - 4 years, 6 months ago

Log in to reply

I like this trick with multiplying by the conjugate!

E.g. Showing by first principle that for f ( x ) = x f(x) = \sqrt{x} ,
f ( x ) = lim h 0 x + h x h = lim h 0 1 x + h + x = 1 2 x . f'(x) = \lim_{h\rightarrow 0 } \frac{ \sqrt{ x+h } - \sqrt{x} } { h } =\lim_{h\rightarrow 0 } \frac{ 1 } { \sqrt{ x+h } + \sqrt{x} } = \frac{1}{ 2 \sqrt{x} } .

Calvin Lin Staff - 4 years, 6 months ago

just the same approach , i have used .

Rudraksh Sisodia - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...