This integral has everything

Calculus Level 4

0 π / 2 sin t cos t ln ( tan t e t ) d t \large \int_0^{\pi /2} \sin t \cos t \ln \left(\dfrac{\tan t}{e^t} \right) \, dt

The integral above has a closed from. Find this closed form.

Give your answer to 3 decimal places.


The answer is -0.392.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Patrik Kovacs
May 3, 2016

I have uploaded this picture file, because the LATEX tag doesn't work for me at the moment.

Using reflection formulas yields a cleaner solution.

a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_{a}^{b} f(x)dx = \displaystyle\int_{a}^{b} f(a+b-x)dx

This and adding reduces the integrand nicely.

A Former Brilliant Member - 5 years, 1 month ago
Hassan Abdulla
May 5, 2018

let I = 0 π / 2 sin t cos t ln ( tan t e t ) d t I = 0 π / 2 sin t cos t ln ( cot t e π / 2 t ) d t / / p u t u = π / 2 t 2 I = 0 π / 2 sin t cos t ln ( tan t e t ) d t + 0 π / 2 sin t cos t ln ( cot t e π / 2 t ) d t 2 I = 0 π / 2 sin t cos t ( ln ( tan t e t ) + ln ( cot t e π / 2 t ) ) d t = 0 π / 2 sin t cos t ln ( e π / 2 ) d t 2 I = π 2 0 π / 2 sin t cos t d t = π 4 I = π 8 \text {let }I=\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\ln { \left( \frac { \tan t }{ e^{ t } } \right) } dt } \\ I=\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\ln { \left( \frac { \cot t }{ e^{ \pi /2-t } } \right) } dt } \qquad \qquad \color{#3D99F6} //put \quad u=\pi /2-t \\ 2I=\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\ln { \left( \frac { \tan t }{ e^{ t } } \right) } dt } +\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\ln { \left( \frac { \cot t }{ e^{ \pi /2-t } } \right) } dt } \\ 2I=\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\left( \ln { \left( \frac { \tan t }{ e^{ t } } \right) } +\ln { \left( \frac { \cot t }{ e^{ \pi /2-t } } \right) } \right) dt } =\int _{ 0 }^{ \pi /2 }{ \sin t\cos t\ln { \left( e^{ -\pi /2 } \right) } dt } \\ 2I=-\frac { \pi }{ 2 } \int _{ 0 }^{ \pi /2 }{ \sin t\cos t\quad dt } =-\frac { \pi }{ 4 } \\ I=-\frac { \pi }{ 8 }

Tom Engelsman
May 5, 2016

Another trick is to expand the integrand into:

sin(x) cos(x) ln[ sin(x)/(cos(x) e^x) ] = sin(x) cos(x)*[ln sin(x) - ln cos(x) - ln e^x];

or sin(x) cos(x) ln sin(x) - sin(x) cos(x) ln cos(x) - sin(x) cos(x) x;

or sin(x) cos(x) ln sin(x) - sin(x) cos(x) ln cos(x) - (x/2)*sin(2x); (i).

Now, taking u = sin(x); du = cos(x) dx; v = cos(x); dv = -sin(x) dx, the integral of u*ln(u) becomes:

(u^2)/2 * [ln(u) - 1/2] (ii)

using integration-by-parts. This yields the final integration value of:

(1/2) (sin(x))^2 * [ln(sin(x) - 1/2] + (1/2) (cos(x))^2 * [ln(cos(x) - 1/2] - (1/8) sin(2x) + (x/4) cos(2x) (iii)

Plugging in the bounds 0 and pi/2 to (iii) ultimately gives -pi/8 for a result.

Another way could be to expand the integrand as you mentioned and then use derivative of trigonometric form of beta function.

A Former Brilliant Member - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...