This Integral is really Hot!

Calculus Level 5

H = 1 1 ( 2 x tan 2 ( x ) 1 + 2 x + 3 x tan 4 ( x ) 1 + 3 x ) d x \large{H = \int_{-1}^1 \left( \dfrac{2^x \tan^2(x)}{1+2^x} + \dfrac{3^x\tan^4(x)}{1+3^x} \right) \ dx}

If H H can be represented as:

( tan ( π A B ) ) C D \large{\dfrac{\left(\tan\left(\frac{\pi^A}{B}\right)\right)^C}{D}}

where A , B , C , D A,B,C,D are non-negative integers, find the value of A + B + C + D A+B+C+D ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satyajit Mohanty
Jul 29, 2015

Let f ( x ) = 2 x tan 2 ( x ) 1 + 2 x f(x) = \dfrac{2^x \tan^2(x)}{1+2^x} and g ( x ) = 3 x tan 4 ( x ) 1 + 3 x g(x) = \dfrac{3^x \tan^4(x)}{1+3^x} .

Now:

H = 1 1 ( f ( x ) + g ( x ) ) d x = 1 1 ( f ( 1 + 1 x ) + g ( 1 + 1 x ) ) d x = 1 1 ( f ( x ) + g ( x ) ) d x H = \int_{-1}^{1} ( f(x) + g(x) ) \ dx = \int_{-1}^{1} ( f(-1+1-x) + g(-1+1-x) )\ dx = \int_{-1}^{1} ( f(-x) + g(-x) ) \ dx

H = 1 1 ( 2 x tan 2 ( x ) 1 + 2 x + 3 x tan 4 ( x ) 1 + 3 x ) d x = 1 1 ( tan 2 ( x ) 1 + 2 x + tan 4 ( x ) 1 + 3 x ) d x \Rightarrow H = \int_{-1}^{1} \left ( \dfrac{2^x \tan^2(x)}{1+2^x} + \dfrac{3^x \tan^4(x)}{1+3^x} \right)\ dx = \int_{-1}^{1} \left ( \dfrac{\tan^2(x)}{1+2^x} + \dfrac{\tan^4(x)}{1+3^x} \right)\ dx

2 H = 1 1 ( tan 2 ( x ) + tan 4 ( x ) ) d x = 1 1 tan 2 ( x ) sec 2 ( x ) d x \Rightarrow 2H = \int_{-1}^{1} \left( \tan^2(x) + \tan^4(x) \right)\ dx = \int_{-1}^{1} \tan^2(x)\sec^2(x)\ dx

H = 0 1 tan 2 ( x ) sec 2 ( x ) d x \Rightarrow H = \int_0^1 \tan^2(x)\sec^2(x)\ dx

Let u = tan ( x ) d u = sec 2 ( x ) d x u = \tan(x) \Rightarrow du = \sec^2(x)dx

When x = 0 , u = 0 and when x = 1 , u = tan ( 1 ) x=0, u=0 \text{ and when } x=1, u=\tan(1) . So:

H = 0 tan ( 1 ) u 2 d u = u 3 3 0 tan ( 1 ) = tan 3 ( 1 ) 3 H = \int_0^{\tan(1)} u^2 \ du= \left. \dfrac{u^3}{3} \right|_0^{\tan(1)} = \dfrac{\tan^3(1)}{3}

So, A = 0 , B = 1 , C = 3 , D = 3 , A + B + C + D = 7 A=0, B=1, C=3, D=3, A+B+C+D = \boxed{7} .

Actually this one's noT hot :D easy !

Ciara Sean - 5 years, 10 months ago

Log in to reply

I didn't find any suitable title for this problem :D

Satyajit Mohanty - 5 years, 10 months ago
Chew-Seong Cheong
Oct 29, 2016

Note that:

I 1 = 1 1 2 x tan 2 x 1 + 2 x d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 1 1 ( 2 x tan 2 x 1 + 2 x + 2 x tan 2 x 1 + 2 x ) d x = 1 2 1 1 ( 2 x tan 2 x 1 + 2 x + tan 2 x 2 x + 1 ) d x = 1 2 1 1 tan 2 x d x \begin{aligned} I_1 & = \int_{-1}^1 \frac {2^x \tan^2 x}{1+2^x} dx & \small {\color{#3D99F6}\text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b -x) \ dx} \\ & = \frac 12 \int_{-1}^1\left( \frac {2^x \tan^2 x}{1+2^x} + \frac {2^{-x} \tan^2 x}{1+2^{-x}} \right) dx \\ & = \frac 12 \int_{-1}^1 \left( \frac {2^x \tan^2 x}{1+2^x} + \frac {\tan^2 x}{2^x+1} \right) dx \\ & = \frac 12 \int_{-1}^1 \tan^2 x \ dx \end{aligned}

Similarly, we have I 2 = 1 1 3 x tan 4 x 1 + 3 x d x = 1 2 1 1 tan 4 x d x \displaystyle I_2 = \int_{-1}^1 \frac {3^x \tan^4 x}{1+3^x} dx = \frac 12 \int_{-1}^1 \tan^4 x \ dx

Therefore,

I = 1 1 ( 2 x tan 2 x 1 + 2 x + 3 x tan 4 x 1 + 3 x ) d x = 1 2 1 1 ( tan 2 x + tan 4 x ) d x = 1 2 1 1 tan 2 x sec 2 x d x = 1 6 tan 3 x 1 1 = tan 3 ( 1 ) 3 \begin{aligned} I & = \int_{-1}^1\left( \frac {2^x \tan^2 x}{1+2^x} + \frac {3^x \tan^4 x}{1+3^x} \right) dx \\ & = \frac 12 \int_{-1}^1 (\tan^2 x + \tan^4 x) \ dx \\ & = \frac 12 \int_{-1}^1 \tan^2 x \sec^2 x \ dx \\ & = \frac 16 \tan^3 x \ \bigg|_{-1}^1 \\ & = \frac {\tan^3 (1)}3 \end{aligned}

A + B + C + D = 0 + 1 + 3 + 3 = 7 \implies A+B+C+D = 0+1+3+3 = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...