∫ 0 ∞ 4 x 2 − 1 ∣ cos ( π x ) ∣ d x
Find the value of the closed form of the above integral.
Give your answer to 1 decimal place.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Lovely solution
This will not be a complete solution, but simply my observations from expirimental scrawling.
It can (somehow) be shown through partial fractions that, for any natural n , the following statement is true:
4 ∫ 0 n 4 x 2 − 1 ∣ cos π x ∣ d x = ( − 1 ) n + 1 ( Si ( 2 ( 2 n − 1 ) π ) − 2 Si ( n π ) + Si ( 2 ( 2 n − 1 ) π ) )
Interpretation 1: Through a simple limit argument, the limit is easily seen to be zero, as every term grows at the same asymptotic rate, and the Sine Integral has a limiting value of 2 π
Interpretation 2: The Symmetric Difference Quotient approximates the second derivative of the Sine Integral. Since the Sine Integral limits towards a constant, the concavity of the function in the limit is 0 , and so the expression we are considering approximates that behaviour, and so we can expect it to tend towards 0
Any comments to help make the above arguments more rigorous will be greatly appreciated.
Problem Loading...
Note Loading...
Set Loading...
Let r ∈ R . Then,
∫ 0 r 4 x 2 − 1 ∣ cos ( π x ) ∣ d x = = = ∫ 0 r 4 x − 2 ∣ cos ( π x ) ∣ d x − ∫ 0 r 4 x + 2 ∣ cos ( π x ) ∣ d x ∫ 0 r 4 x − 2 ∣ cos ( π x ) ∣ d x − ∫ 1 r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x ∫ 0 1 4 x − 2 ∣ cos ( π x ) ∣ d x − ∫ r r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x
Let's show that ∫ 0 1 4 x − 2 ∣ cos ( π x ) ∣ d x = 0 :
∫ 0 1 4 x − 2 ∣ cos ( π x ) ∣ d x = ∫ 0 1 / 2 4 x − 2 ∣ cos ( π x ) ∣ d x + ∫ 1 / 2 1 4 x − 2 ∣ cos ( π x ) ∣ d x
In the latter integral, make the substitution y = 1 − x :
∫ 0 1 4 x − 2 ∣ cos ( π x ) ∣ d x = = = ∫ 0 1 / 2 4 x − 2 ∣ cos ( π x ) ∣ d x + ∫ 1 / 2 0 2 − 4 y ∣ cos ( π ( 1 − y ) ) ∣ ( − 1 ) d y ∫ 0 1 / 2 4 x − 2 ∣ cos ( π x ) ∣ d x − ∫ 0 1 / 2 4 y − 2 ∣ cos ( π y ) ∣ d y 0
As desired. Now let's set boundaries on ∫ r r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x . Clearly, if r > 2 1 , then 4 x − 2 ∣ cos ( π x ) ∣ ≥ 0 , so therefore ∫ r r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x > 0 . On the other hand, if r ≤ x ≤ r + 1 , then 4 x − 2 ∣ cos ( π x ) ∣ ≤ 4 r − 2 1 . Hence ∫ r r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x ≤ ∫ r r + 1 4 r − 2 1 d x = 4 r − 2 1 .
Therefore, since ∫ 0 r 4 x 2 − 1 ∣ cos ( π x ) ∣ d x = − ∫ r r + 1 4 x − 2 ∣ cos ( π x ) ∣ d x , we have an upper and lower boundary on this integral which both approach 0 as r approaches infinity. Therefore, by the Squeeze Theorem,
∫ 0 ∞ 4 x 2 − 1 ∣ cos ( π x ) ∣ d x = 0