A calculus problem by Jose Sacramento

Calculus Level 3

0 π / 2 cos x 1 + sin 2 x d x \large \int_0^{\pi/2} \cos x\sqrt{1+\sin^2x} \, dx

Find the value of the closed form of the above integral.

Give your answer to 3 decimal places.


The answer is 1.1477.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 11, 2016

I = 0 π 2 cos x 1 + sin 2 x d x Let u = sin x , d u = cos x d x = 0 1 1 + u 2 d u Let u = tan θ , d u = sec 2 θ d θ = 0 π 4 sec 3 θ d θ By reduction formula (see below). = 1 2 0 π 4 sec θ d θ + sec θ tan θ 2 0 π 4 = 1 2 0 π 4 sec θ tan θ + sec 2 θ tan θ + sec θ d θ + 1 2 Let v = tan θ + sec θ ; d v = ( sec 2 θ + tan θ sec θ ) d θ = 1 2 1 1 + 2 1 v d v + 1 2 = ln ( 1 + 2 ) 2 + 1 2 1.148 \begin{aligned} I & = \int_0^\frac \pi 2 \cos x \sqrt{1+\sin^2 x} \ dx & \small \color{#3D99F6} \text{Let }u = \sin x, \ du = \cos x \ dx \\ & = \int_0^1 \sqrt{1+u^2} du & \small \color{#3D99F6} \text{Let }u = \tan \theta, \ du = \sec^2 \theta \ d\theta \\ & = \int_0^\frac \pi 4 \sec^3 \theta \ d \theta & \small \color{#3D99F6} \text{By reduction formula (see below).} \\ & = \frac 12 \int_0^\frac \pi 4 \sec \theta \ d \theta + \frac {\sec \theta \tan \theta}2 \bigg|_0^\frac \pi 4 \\ & = \frac 12 \int_0^\frac \pi 4 \frac {\sec \theta \tan \theta + \sec^2 \theta}{\tan \theta + \sec \theta} \ d \theta + \frac 1{\sqrt 2} & \small \color{#3D99F6} \text{Let }v = \tan \theta + \sec \theta; \ dv = (\sec^2 \theta + \tan \theta \sec \theta) \ d\theta \\ & = \frac 12 \int_1^{1+\sqrt 2} \frac 1v \ dv + \frac 1{\sqrt 2} \\ & = \frac {\ln (1+\sqrt 2)}2 + \frac 1{\sqrt 2} \\ & \approx \boxed{1.148} \end{aligned}


Reduction formula:

sec n x d x = n 2 n 1 sec n 2 x d x + sec n 2 x tan x n 1 \begin{aligned} \int \sec^n x \ dx & = \frac {n-2}{n-1} \int \sec^{n-2} x \ dx + \frac {\sec^{n-2}x \tan x}{n-1} \end{aligned}

why didn't you use

a 2 + x 2 d x = x 2 a 2 + x 2 + a 2 2 l o g ( x + a 2 + x 2 ) + c \int \sqrt{a^2+x^2}dx =\dfrac{x}{2}\sqrt{a^2+x^2}+\dfrac{a^2}{2}log{(x+\sqrt{a^2+x^2})}+c

Sabhrant Sachan - 4 years, 6 months ago

Log in to reply

It is similar with less steps shown.

Chew-Seong Cheong - 4 years, 6 months ago
梦 叶
Dec 11, 2016

First, let u equals to sinx, thenjoy we have sqrt (1+u^2) from 0 to 1. Then, let u equals to tan (v) and this gives us sec^3 (v) ....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...