This is beautyyy

Calculus Level 3

b ( c ! ! d ! ! c ! d ! ) + n = 1 ( 1 ) n ( 4 n + 3 ) ! = 1 a e a ( e sin ( 1 a π b ) + sin ( 1 a + π b ) ) \begin{aligned} b\left(\large{\frac{\hspace{3mm} \frac{{\color{#3D99F6}c!!}}{{\color{#D61F06}d!!}}\hspace{3mm} }{\frac{{\color{#3D99F6}c!}}{{\color{#D61F06}d!}}}}\right)+\sum_{n=1}^{\infty}\dfrac{(-1)^n}{(4n+3)!} = \dfrac{1}{a\sqrt[\sqrt a]{e}}\left(\sqrt e \sin\left(\dfrac{1}{\sqrt a} -\dfrac{\pi}{b}\right)+\sin \left(\dfrac{1}{\sqrt a} +\dfrac{\pi}{b}\right)\right)\end{aligned}

The equation above holds true for positive integers a a , b b , c c and d d . Find the value of a + b + c + d a+b+c+d .



The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 24, 2018

Consider the Maclaurin series of s i n x sin x as follows.

sin x = x 1 ! x 3 3 ! + x 5 5 ! x 7 7 ! + x 9 9 ! x sin x = x 2 1 ! x 4 3 ! + x 6 5 ! x 8 7 ! + x 10 9 ! Putting x = i , where i = 1 i sin i = i 1 ! + 1 3 ! i 5 ! 1 7 ! + i 9 ! Taking the real part on both sides ( i sin i ) = n = 1 ( 1 ) n ( 4 n + 3 ) ! \begin{aligned} \sin x & = \frac x{1!} - \frac {x^3}{3!} + \frac {x^5}{5!} - \frac {x^7}{7!} + \frac {x^9}{9!} - \cdots \\ x\sin x & = \frac {x^2}{1!} - \frac {x^4}{3!} + \frac {x^6}{5!} - \frac {x^8}{7!} + \frac {x^{10}}{9!} - \cdots & \small \color{#3D99F6} \text{Putting }x = \sqrt{i} \text{, where }i=\sqrt {-1} \\ \sqrt i \sin \sqrt i & = \frac i{1!} + \frac 1{3!} - \frac i{5!} - \frac 1{7!} + \frac i{9!} - \cdots & \small \color{#3D99F6} \text{Taking the real part on both sides} \\ \Re \left(\sqrt i \sin \sqrt i \right) & = \sum_{n=1}^\infty \frac {(-1)^n}{(4n+3)!} \end{aligned}

Then

n = 0 ( 1 ) n ( 4 n + 3 ) ! = ( i sin i ) = ( i 2 i ( e i i e i i ) ) = ( e π 4 i 2 i ( e e 3 π 4 i e e 3 π 4 i ) ) = ( e π 4 i 2 i ( e 1 2 + i 2 e 1 2 i 2 ) ) = ( 1 2 i ( e 1 2 e ( π 4 + 1 2 ) i e 1 2 e ( π 4 1 2 ) i ) ) = ( 1 2 i ( e 1 2 ( cos ( π 4 + 1 2 ) + i sin ( π 4 + 1 2 ) ) e 1 2 ( cos ( π 4 1 2 ) + i sin ( π 4 1 2 ) ) ) ) = 1 2 e 2 ( 2 sin ( 1 2 π 4 ) + sin ( 1 2 + π 4 ) ) \begin{aligned} \sum_{\color{#D61F06}n=0}^\infty \frac {(-1)^n}{(4n+3)!} & = \Re \left(\sqrt i \sin \sqrt i \right) \\ & = \Re \left(\frac {\sqrt i}{2i} \left(e^{i\sqrt i} - e^{-i\sqrt i}\right)\right) \\ & = \Re \left(\frac {e^{\frac \pi 4 i}}{2i} \left(e^{e^{\frac {3\pi}4 i}} - e^{-e^{\frac {3\pi}4 i}}\right)\right) \\ & = \Re \left(\frac {e^{\frac \pi 4 i}}{2i} \left(e^{-\frac 1{\sqrt 2} + \frac i{\sqrt 2}} - e^{\frac 1{\sqrt 2} - \frac i{\sqrt 2}}\right)\right) \\ & = \Re \left(\frac 1{2i} \left(e^{-\frac 1{\sqrt 2}} e^{\left(\frac \pi 4 + \frac 1{\sqrt 2}\right)i} - e^{\frac 1{\sqrt 2}} e^{\left(\frac \pi 4 - \frac 1{\sqrt 2}\right)i} \right)\right) \\ & = \Re \left(\frac 1{2i} \left(e^{-\frac 1{\sqrt 2}} \left(\cos \left(\frac \pi 4 + \frac 1{\sqrt 2} \right) + i \sin \left(\frac \pi 4 + \frac 1{\sqrt 2} \right) \right) - e^{\frac 1{\sqrt 2}} \left(\cos \left(\frac \pi 4 - \frac 1{\sqrt 2} \right) + i \sin \left(\frac \pi 4 - \frac 1{\sqrt 2} \right) \right) \right) \right) \\ & = \frac 1{2\sqrt[\sqrt 2]e} \left(\sqrt 2 \sin \left(\frac 1{\sqrt 2} - \frac \pi 4 \right) + \sin \left(\frac 1{\sqrt 2}+\frac \pi 4 \right)\right) \end{aligned}

Implying that a = 2 a=2 , b = 4 b=4 and:

1 3 ! + n = 1 ( 1 ) n ( 4 n + 3 ) ! = 1 2 e 2 ( 2 sin ( 1 2 π 4 ) + sin ( 1 2 + π 4 ) ) b ( c ! ! d ! ! c ! d ! ) = 1 3 ! c ! ! d ! ! d ! c ! = 1 24 ( c 1 ) ! ! ( d 1 ) ! ! = 24 = 6 4 2 2 \begin{aligned} \frac 1{3!} + \sum_{\color{#3D99F6}n=1}^\infty \frac {(-1)^n}{(4n+3)!} & = \frac 1{2\sqrt[\sqrt 2]e} \left(\sqrt 2 \sin \left(\frac 1{\sqrt 2} - \frac \pi 4 \right) + \sin \left(\frac 1{\sqrt 2}+\frac \pi 4 \right)\right) \\ \implies b \left(\frac {\frac {c!!}{d!!}}{\frac {c!}{d!}} \right) & = \frac 1{3!} \\ \frac {c!!}{d!!} \cdot \frac {d!}{c!} & = \frac 1{24} \\ \frac {(c-1)!!}{(d-1)!!} & = 24 = \frac {6 \cdot 4 \cdot 2}2 \end{aligned}

Therefore, c = 7 c = 7 and d = 3 d=3 , and a + b + c + d = 2 + 4 + 7 + 3 = 16 a+b+c+d = 2+4+7+3 = \boxed{16} .

Nice solution(same ) Sir !! I was really inspired by previous problem ,so I came to write up this problem. Do you think this problem is good ?

Naren Bhandari - 2 years, 6 months ago

Log in to reply

Again, the part b c ! ! d ! ! c ! d ! b\dfrac {\frac {c!!}{d!!}}{\frac {c!}{d!}} is not necessary. I think you have added it so that you can post it as your own. The previous one the original should be ( n 1 ) ! (n-1)! instead of ( n 2 ) ! (n-2)! , because computation for ( n 1 ) ! (n-1)! is much easier and formula can be used. I think you should quote who posted them and where.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

The previous problem doesn't have factorial part which is just n = 0 ( 1 ) n 4 n + 3 \sum_{n=0}^{\infty}\dfrac{(-1)^n}{4n+3} and what i do is just add the factorial part to it.

I got that problem(original problem), n = 0 ( 1 ) n 4 n + 3 \sum_{n=0}^{\infty}\dfrac{(-1)^n}{4n+3} in Facebook group

Naren Bhandari - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...