lo g 4 ⎝ ⎛ ( sin 3 2 ∘ cos 1 3 ∘ + cos 3 2 ∘ sin 1 3 ∘ lo g 4 ( 6 4 2 5 6 ) ) 2 lo g 2 4 ⎠ ⎞ − 1
Simplify the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Awesome solution!!!!!
Log in to reply
Isme awesome kya tha yaar, ye simple question to tha !!!!!!!!!!
x = lo g 4 ⎝ ⎛ ( sin 3 2 ∘ cos 1 3 ∘ + cos 3 2 ∘ sin 1 3 ∘ lo g 4 ( 6 4 2 5 6 ) ) 2 lo g 2 4 ⎠ ⎞ − 1 = lo g 4 ( ( sin 4 5 ∘ lo g 4 ( 4 ) ) 2 × 2 ) − 1 = lo g 4 ⎝ ⎛ ( 2 1 1 ) 4 ⎠ ⎞ − 1 = lo g 4 ( ( 2 2 1 ) 4 ) − 1 = lo g 4 ( 2 2 ) − 1 = lo g 4 ( 4 ) − 1 = 1 − 1 = 0 Note that sin ( A + B ) = sin A cos B + cos A sin B
How did you compute sin32cos12 + cos32sin12 ???🤔🤔🤔🤨🤨🤨🤨🤨🤨
Sorry got it My mistake
How is sin(32)cos(13)+cos(32)sin(13) = sin(45) ??
First work inside the bracket. The numerator is equivalent to log4(256)-log4(64) = 4-3 = 1. The Denominator used the addition formula. It is equal to sin(32+13)=sin45=sqt2 over 2. Then get the reciprocal of sqt 2 over 2, which is simply sqt2! Next is the exponent. 2log2(4) = 2x2log2(2)=2x2 = 4. sqt2 raised to 4 is 4. log4(4)=1 and lastly 1-1=0. zero (0) is the final answer :)))
Problem Loading...
Note Loading...
Set Loading...
lo g 4 { [ sin 3 2 cos 1 3 + cos 3 2 sin 1 3 lo g 4 6 4 2 5 6 ] 2 lo g 2 4 } − 1
= lo g 4 { [ sin 4 5 lo g 4 6 4 2 5 6 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 1 / 2 lo g 4 6 4 2 5 6 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 2 × lo g 4 6 4 2 5 6 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 2 × lo g 4 4 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 2 × 1 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 2 ] 2 lo g 2 4 } − 1
= lo g 4 { [ 2 ] 4 } − 1
= 4 lo g 4 { 2 } − 1
= 2 lo g 2 { 2 } − 1
= lo g 2 { 2 } − 1
= 1 − 1
= 0