A calculus problem by Kunal Gupta

Calculus Level 4

f ( x ) = n = 0 2 2 n 1 ( 1 ) n x n ln 2 n ( x 2 + 1 ) sin n ( x ) ( 2 n ) ! \large f(x) = \sum_{n=0}^{\infty}\dfrac{2^{2n-1}(-1)^{n}x^{n}\ln^{2n}(x^{2}+1)\sin^{n}(x)}{(2n)!} For f ( x ) f(x) as defined above, find 1 0 7 f ( π 2 ) . \large \left \lfloor 10^{7} f\left(\dfrac{\pi}{2}\right)\right \rfloor.


The answer is -4998458.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 12, 2016

f ( x ) = n = 0 2 2 n 1 ( 1 ) n x n ln 2 n ( x 2 + 1 ) sin n x ( 2 n ) ! = 1 2 n = 0 ( 1 ) n 2 2 n x n ln 2 n ( x 2 + 1 ) sin n x ( 2 n ) ! = 1 2 n = 0 ( 1 ) n ( 2 x sin x ln ( x 2 + 1 ) ) 2 n ( 2 n ) ! = 1 2 cos ( 2 x sin x ln ( x 2 + 1 ) ) \begin{aligned} f(x) & = \sum_{n=0}^\infty \frac {{\color{#3D99F6}2^{2n-1}}(-1)^n x^n \ln^{2n}(x^2+1)\sin^n x}{(2n)!} \\ & = {\color{#3D99F6}\frac 12} \sum_{n=0}^\infty \frac {(-1)^n {\color{#3D99F6}2^{2n}} x^n \ln^{2n}(x^2+1)\sin^n x}{(2n)!} \\ & = \frac 12 \sum_{n=0}^\infty \frac {(-1)^n {\color{#3D99F6} \left( 2 \sqrt {x \sin x} \ln (x^2+1)\right)}^{2n}}{(2n)!} \\ & = \frac 12 \cos {\color{#3D99F6} \left( 2 \sqrt {x \sin x} \ln (x^2+1)\right)} \end{aligned}

Then, we have:

1 0 7 f ( π 2 ) = 1 0 7 2 cos ( 2 π 2 sin π 2 ln ( π 2 4 + 1 ) ) = 4998457.80786 = 4998458 \begin{aligned} \implies \left \lfloor 10^7 f \left(\frac \pi 2 \right) \right \rfloor & = \left \lfloor \frac {10^7}2 \cos \left( 2 \sqrt {\frac \pi 2 \sin \frac \pi 2} \ln \left(\frac {\pi ^2}4 +1 \right) \right) \right \rfloor \\ & = \lfloor -4998457.80786 \rfloor \\ & = \boxed{-4998458} \end{aligned}

I followed the exact same process and ended up with -4,998,458.008. The floor of which should be -4,998,459! I think the answer key needs to be updated.

tom engelsman - 4 years, 6 months ago

Log in to reply

Check your working again, the answer is correct.

Pi Han Goh - 4 years, 6 months ago

I used Wolfram Alpha to compute the result. It is -4.998457807858501349427512831842021883932928223258900 × 10^6.

Chew-Seong Cheong - 4 years, 6 months ago

I really liked the coloring here - it helped me follow the argument.

Jason Dyer Staff - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...