This is exponential?

Algebra Level 3

1 + 6 ( 1 ) + 6 ( 7 ) + 6 ( 7 2 ) + 6 ( 7 3 ) + + 6 ( 7 99 ) = e α \large 1+6(1)+6(7)+6(7^{2})+6(7^{3})+\cdots+6(7^{99}) = e^{\alpha}

Given the above, find α \alpha (to 2 decimal places).


Inspiration .


The answer is 194.59.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rohith M.Athreya
Dec 31, 2016

1 + 6 ( 1 ) + 6 ( 7 ) + 6 ( 7 2 ) + . . . . + 6 ( 7 99 ) \large \displaystyle {\color{#20A900} 1+6(1)}+6(7)+6(7^{2})+....+6(7^{99})

7 + 6 ( 7 ) + 6 ( 7 2 ) + . . . . + 6 ( 7 99 ) \large \displaystyle {\color{#20A900}7+6(7) }+6(7^{2})+....+6(7^{99})

7 2 + 6 ( 7 2 ) + . . . . + 6 ( 7 99 ) \large \displaystyle {\color{#20A900}7^{2}+6(7^{2}) }+....+6(7^{99})

.....

7 99 + 6 ( 7 99 ) \large \displaystyle {\color{#20A900}7^{99}+6(7^{99})}

7 100 \large \displaystyle {\color{#D61F06}7^{100}}

e 100 l n 7 \large \displaystyle {\color{#20A900}e^{100ln7}}

Chew-Seong Cheong
Dec 31, 2016

e α = 1 + 6 ( 1 ) + 6 ( 7 ) + 6 ( 7 2 ) + 6 ( 7 3 ) + + 6 ( 7 99 ) e α 1 6 = 7 0 + 7 1 + 7 2 + 7 3 + + 7 99 = 7 100 1 7 1 e α 1 6 = 7 100 1 6 e α = 7 100 α = 100 ln 7 194.59 \begin{aligned} e^\alpha & = 1 + 6(1) + 6(7) + 6(7^2) + 6(7^3) + \cdots + 6(7^{99}) \\ \frac {e^\alpha - 1}6 & = 7^0 + 7^1 + 7^2 + 7^3 + \cdots + 7^{99} \\ & = \frac {7^{100}-1}{7-1} \\ \implies \frac {{\color{#3D99F6}e^\alpha} - 1}6 & = \frac {{\color{#3D99F6}7^{100}}-1}6 \\ \implies e^\alpha & = 7^{100} \\ \implies \alpha & = 100 \ln 7 \approx \boxed{194.59} \end{aligned}

Achal Jain
Dec 30, 2016

We can rewrite the expression as:

1 + 6 ( 1 + 7 + 7 2 + 7 3 + . . . . 7 99 ) 1+6(1+7+7^{2}+ 7^{3}+....7^{99}) = e α e^{\alpha}

it's easy to observe it forms GP.

The sum can be found using the formula S n = a ( r n 1 ) r 1 { S }_{ n }=\frac { a({ r }^{ n }-1) }{ r-1 }

1 + 6 ( 7 100 1 7 1 ) 1+6(\frac { { 7 }^{ 100 }-1 }{ 7-1 }) = e α e^{\alpha} .

Which is = 1 + 7 100 1 = e α 1+7^{100} -1= e^{\alpha}

Now finally we get ( 7 100 ) = e α (7^{100})= e^{\alpha} .

Take natural log on both sides

Finally we would get α = 100 l n 7 \alpha =100ln7

Thanx bro.

Achal Jain - 4 years, 5 months ago

it is 100ln7

Rohith M.Athreya - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...