This is great

Geometry Level 4

In A B C \triangle ABC , D D is a point on B C BC such that A D AD is the internal angle bisector of A \angle A . Suppose B = 2 C \angle B=2 \angle C and C D = A B CD=AB .

Find A \angle A in degrees.


Source: CRMO 2001


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let BE be the angle bisector of angle B. Angles are shown in the sketch. A p p l y i n g S i n L a w , a b = S i n A S i n B , w e g e t : I n Δ A B D A D B = X + Y , i n t e r n a l a n g l e s o f Δ A D C . A B A D = S i n ( X + Y ) S i n ( 2 X ) . I n Δ A D B D C = A B S i n ( A D ) = S i n ( Y ) S i n ( X ) . S i n ( X + Y ) S i n ( 2 X ) = S i n ( Y ) S i n ( X ) S i n ( X + Y ) S i n ( Y ) = S i n ( 2 X ) S i n ( X ) S i n ( X ) C o t ( Y ) + C o s ( X ) = 2 C o s ( X ) , expanding Sin of sum. C o t ( Y ) = C o t ( X ) , Y = X . B u t 180 = 2 Y + 3 X = 5 Y , 2 Y = 7 2 o \text{Let BE be the angle bisector of angle B. Angles are shown in the sketch.} \\ Applying~ Sin~ Law,~\dfrac a b =\dfrac{SinA}{SinB},~ we~ get:-\\ In~~\Delta~ABD~~\angle~ADB=X+Y, internal ~angles~of~\Delta~ADC.\\ \dfrac{AB}{ AD}= ~~\dfrac{ Sin(X+Y)}{Sin(2X)}.\\ In~~\Delta~ADB~~\dfrac{ DC=AB}{Sin(AD)}= ~~\dfrac{Sin(Y)}{Sin(X)}.\\ \therefore~\dfrac{ Sin(X+Y)}{Sin(2X)}=\dfrac{Sin(Y)}{Sin(X)}\\ \implies~~\dfrac{ Sin(X+Y)}{Sin(Y)}=\dfrac{Sin(2X)}{Sin(X)}\\ \therefore~Sin(X)Cot(Y)+Cos(X) = 2Cos(X), \text{expanding Sin of sum.}\\ \therefore~Cot(Y)=Cot(X),~~~\implies~Y=X.\\ But~180=2Y+3X=5Y,~~\implies~2Y=\Large~~~~\color{#D61F06}{72^o}

Exact Same thing!!

Navneel Mandal - 5 years, 7 months ago

Exactly Same Way.

Kushagra Sahni - 5 years, 4 months ago

Let A B C = 2 α \angle ABC =2\alpha and B A D = β \angle BAD = \beta . If we draw a line segment D F \overline{DF} such that C D F = α \angle CDF=\alpha we have that triangles A B D ABD and A D F ADF are congruent, so A B = A F \overline{AB}=\overline{AF} and B D = D F \overline{BD}=\overline{DF} . Also we have that triangle C D F CDF is isosceles, so D F = C F \overline{DF}=\overline{CF} . As C D = A F \overline{CD}=\overline{AF} and B D = C F \overline{BD}=\overline{CF} , triangle A B C ABC is isosceles, so β = α = 3 6 o A = 7 2 o \beta=\alpha=36^{o} \rightarrow \angle A = 72^{o}

Akshat Sharda
Oct 26, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...