This is hard 2

Calculus Level 4

n = 1 2011 ( n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! ) \sum_{n=1}^{2011} \left ( \dfrac{n^2+n+1}{(n^2 + n) (n + 1)!} \right )

If the above summation can be stated in the form of a ! b ! 1 a ! b ! \frac {a!-b!-1}{a!-b!} , find a + b.

Thanks to Math man - title taken from math man's problem - This is hard


The answer is 4025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Mar 2, 2015

simplify as: = n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! = ( n + 1 ) 2 n ( n + 1 ) 2 n ! n n ( n + 1 ) ( n + 1 ) ! = 1 n n ! 1 ( n + 1 ) ( n + 1 ) ! \begin{array}{c}=&\dfrac{n^2+n+1}{(n^2+n)*(n+1)!}\\ =&\dfrac{(n+1)^2}{n*(n+1)^2*n!}-\dfrac{n}{n*(n+1)*(n+1)!}\\ =&\dfrac{1}{n*n!}-\dfrac{1}{(n+1)*(n+1)!} \end{array} hence n = 1 2011 ( n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! ) = n = 1 2011 ( 1 n n ! ) n = 1 2011 ( 1 ( n + 1 ) ( n + 1 ) ! ) = n = 1 2011 ( 1 n n ! ) n = 2 2012 ( 1 n n ! ) \sum_{n=1}^{2011} (\dfrac{n^2+n+1}{(n^2+n)*(n+1)!})=\sum_{n=1}^{2011} (\dfrac{1}{n*n!})-\sum_{n=1}^{2011}(\dfrac{1}{(n+1)*(n+1)!})=\sum_{n=1}^{2011} (\dfrac{1}{n*n!})-\sum_{n=2}^{2012}(\dfrac{1}{n*n!}) we see that all terms except last and first cancels out,hence n = 1 2011 ( n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! ) = 1 1 1 ! 1 2012 2012 ! = 2012 2012 ! 1 2012 2012 ! \sum_{n=1}^{2011} (\dfrac{n^2+n+1}{(n^2+n)*(n+1)!})=\dfrac{1}{1*1!}-\dfrac{1}{2012*2012!}=\dfrac{2012*2012!-1}{2012*2012!} comparing the question a ! b ! = 2012 2012 ! a!-b!=2012*2012! note that ( n + 1 ) ! n ! = n ! ( n + 1 1 ) = n n ! (n+1)!-n!=n!(n+1-1)=n*n! hence 2013 ! 2012 ! = 2012 2012 ! 2013!-2012!=2012*2012! and 2012 + 2013 = 4025 2012+2013=\boxed{4025}

Anh Vũ
Mar 4, 2015

i think it should be in level 3

Aaaaa Bbbbb
Feb 14, 2015

n 2 + n + 1 ( n 2 + n ) ( n + 1 ) = 1 n × n ! 1 ( n + 1 ) × ( n + 1 ) ! \frac{n^2+n+1}{(n^2+n)(n+1)}=\frac{1}{n \times n!}-\frac{1}{(n+1) \times (n+1)!} Σ n = 1 2011 n 2 + n + 1 ( n 2 + n ) ( n + 1 ) = 2013 ! 2012 ! 1 2013 ! 2012 ! \Sigma^{2011}_{n=1}\frac{n^2+n+1}{(n^2+n)(n+1)}=\frac{2013!-2012!-1}{2013!-2012!} a + b = 4025 a+b=\boxed{4025}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...