Nested Impossibilities

Algebra Level 3

4 + 1 2 + 1 1 + 1 3 + 1 1 + 1 2 + 1 8 + 1 = A \Large 4+\frac{1}{2+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{2+\frac{1}{8+\frac{1}{\ddots} } } } } } } = \sqrt{ A}

Find the positive integer A A in the equation above.


Details and Assumptions:

  • The pattern repeats 2 , 1 , 3 , 1 , 2 , 8 2,1,3,1,2,8 infinitely, but the 4 4 comes only one time, i.e. in the beginning.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Jan 6, 2016

x = 1 2 + 1 1 + 1 3 + 1 1 + 1 2 + 1 8 + x \color{#D61F06}{x}=\frac{1}{2+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{2+\frac{1}{8+\color{#D61F06}{x}}} } } } } = 1 2 + 1 1 + 1 3 + 1 1 + 8 + x 17 + 2 x =\frac{1}{2+\frac{1}{1+\frac{1}{3+\frac{1}{1+\color{#3D99F6}{\frac{8+x}{17+2x} } } } } } = 1 2 + 1 1 + 1 3 + 17 + 2 x 25 + 3 x =\frac{1}{2+\frac{1}{1+\frac{1}{3+\color{#3D99F6}{\frac{17+2x}{25+3x} } }} } = 1 2 + 1 1 + 25 + 3 x 92 + 11 x =\frac{1}{2+\frac{1}{1+\color{#3D99F6}{\frac{25+3x}{92+11x} } }} = 1 2 + 92 + 11 x 117 + 14 x ={\frac{1}{2+\color{#3D99F6}{\frac{92+11x}{117+14x} } }} = 117 + 14 x 326 + 39 x \color{#3D99F6}{=\frac{117+14x}{ 326+39x}} 39 x 2 + 312 x 117 = 0 \Rightarrow 39x^2+312x-117=0 x = 4 ± 19 \Rightarrow \color{#D61F06}{x}=-4 \pm \sqrt{19} Hence, A = 4 + x = 4 + ( 4 + 19 ) = 19 \sqrt{A}=4+x=4+\color{#D61F06}{(-4+\sqrt{19})}=\sqrt{19} A = 19 \Rightarrow \color{magenta}{A=19}

Really cool and Nice use of colours !! (+1)

Akshat Sharda - 5 years, 5 months ago

Log in to reply

Just learning to use latex :), BTW thanks.

Rishabh Jain - 5 years, 5 months ago
Jesse Nieminen
Feb 2, 2017

Trivially, 18 < ( 4 + 1 2 + 1 1 ) 2 < k 2 = A < ( 4 + 1 2 + 1 1 + 1 3 ) 2 < 20 18 < \left(4+\frac1{2+\frac11}\right)^2 < k^2 = A < \left(4+\frac1{2+\frac1{1 + \frac13}}\right)^2 < 20

Hence, the answer is 19 \boxed{19} . (After computing the simple continued fraction expansion of 19 \sqrt{19} to prove that 19 19 indeed works.)

which trick you used?

xoxo popo - 3 years, 2 months ago

Log in to reply

The property that truncated continued fractions alternate being below and above their value: 1 + s o m e t h i n g > 1 + 0 = 1 1+something > 1+0 = 1 (assuming that "something" is positive), 1 1 + s o m e t h i n g < 1 1 + 0 = 1 1 = 1 \cfrac1{1+something} < \cfrac1{1+0} = \cfrac11 = 1 , so x + 1 1 + s o m e t h i n g < x + 1 x + \cfrac1{1+something} < x + 1 , and it changes again: 1 x + 1 1 + s o m e t h i n g > 1 x + 1 \cfrac1{x + \cfrac1{1+something}} > \cfrac1{x + 1} , etc

C . - 2 years, 9 months ago

Log in to reply

This is a result of how the fractions are constructed that the property is true.

Krish Shah - 1 year, 2 months ago
Daniel Xiang
Feb 15, 2018

19 = [ 4 ; 2 , 1 , 3 , 1 , 2 , 8 ] \sqrt{19}=[4; \overline{2,1,3,1,2,8}]

The sequence of the continued fraction can be found on OEIS( A010124 )

Jonathan Pappas
Nov 17, 2020

This python code repeats 2 , 1 , 3 , 1 , 2 , 8 2, 1, 3, 1, 2, 8 only 3 times. You can see that it converges to 19 \sqrt{19} .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
def continuedFraction(rep, times):
    new = 0.0
    for i in range(0, times):
        for j in rep[::-1]:
            new = 1 / (new + j)
    return new

sqrtValue = 4 + continuedFraction([2, 1, 3, 1, 2, 8], 3)
print(sqrtValue * sqrtValue)
# prints 18.999999999999996 

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...