This Is Insane

Find the number of permutations of the non-supercube i.e 12 × 12 × 12 12 \times 12 \times 12 Rubik's Cube . What ever the answer is multiply it by ( 24 ) 144 ( 24 ! ) 19 \displaystyle \frac {(24)^{144}}{(24!)^{19}} and mark the option.

Take it as a challenge ! It is fun to solve.

You can use wolfram alpha for better calculation.

1.0084... × 1 0 260 \displaystyle 1.0084... \times 10^{260} 3.35847... × 1 0 260 \displaystyle 3.35847... \times 10^{260} 2.41... × 1 0 260 \displaystyle 2.41... \times 10^{260}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nikola Alfredi
Feb 24, 2020

SOLUTION

General formula for any n × n × n n \times n \times n Cube :

( 8 ! × 3 7 ) ( 1 ( 4 ! ) 6 24 ! ) 1 4 ( n 2 ) 2 ( 24 ! ) 1 2 ( n 2 ) ( 12 ! × 2 11 ) n m o d 2 ( 24 23 ( n m o d 2 ) ) × 2 n m o d 2 \displaystyle \frac {(8! \times 3^7 ) ( \frac {1}{(4!)^6} 24! )^{\lfloor \frac {1}{4} (n-2)^2 \rfloor } (24!)^{\lfloor \frac {1}{2} (n-2) \rfloor } (12! \times 2^{11})^{n \mod 2}} {(24 - 23(n \mod 2) ) \times 2^{n \mod 2}}

If you want to know more about how the formula came Click Here

If you plug in 12 instead of n n then Exact answer

( 8 ! × 3 7 ) × ( 24 ! ) 30 2 4 151 2.0636778980738443576466031979202588901702515160010261... × 1 0 513 \displaystyle (8! \times 3^7 ) \times \frac {(24!)^{30}}{24^{151}} \approx 2.0636778980738443576466031979202588901702515160010261... × 10^{513}

But the answer is not this !

ANSWER : ( 8 ! × 3 7 ) × ( 24 ! ) 30 2 4 151 × ( 24 ) 144 ( 24 ! ) 19 1.0084467862454126563877397595078962430925501867714016... × 1 0 260 \displaystyle (8! \times 3^7 ) \times \frac {(24!)^{30}}{24^{151}} \times \frac {(24)^{144}}{(24!)^{19}} \approx 1.0084467862454126563877397595078962430925501867714016... × 10^{260}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...