A geometry problem by Benjamin ononogbu

Geometry Level 5

If cos θ = 3 \cos \theta = 3 , find the principal value of θ \theta and give your answer as θ 2 \theta ^ 2 .


The answer is -3.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 30, 2015

cos θ = 3 \cos \theta = 3 does not have a real solution but a complex one.

cos θ = 3 1 2 ( e i θ + e i θ ) = 3 e i θ + e i θ = 6 e i 2 θ 6 e i θ + 1 = 0 A quadratic of e i θ e i θ = 6 ± 36 4 2 = 3 ± 2 2 i θ = ln ( 3 ± 2 2 ) Squaring both sides, θ 2 = { ln 2 ( 3 + 2 2 ) = 1.76274717 4 2 = 3.1072776 ln 2 ( 3 2 2 ) = ( 1.762747174 ) 2 = 3.1072776 θ 2 = 3.107 \begin{aligned} \cos \theta & = 3 \\ \Rightarrow \frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right) & = 3 \\ e^{i\theta} + e^{-i\theta} & = 6 \\ e^{i2\theta} - 6 e^{i\theta} + 1 & = 0 \quad \quad \quad \quad \quad \quad \space \space \small \color{#3D99F6}{\text{A quadratic of }e^{i \theta}} \\ \Rightarrow e^{i\theta} & = \frac{6 \pm \sqrt{36-4}}{2} \\ & = 3 \pm 2 \sqrt{2} \\ i\theta & = \ln (3 \pm 2 \sqrt{2}) \quad \quad \small \color{#3D99F6}{\text{Squaring both sides,}} \\ -\theta^2 & = \begin{cases} \ln^2 (3 + 2 \sqrt{2}) = 1.762747174^2 & = 3.1072776 \\ \ln^2 (3 - 2 \sqrt{2}) = (-1.762747174)^2 &=3.1072776 \end{cases} \\ \Rightarrow \theta^2 & = \boxed{-3.107} \end{aligned}

\\

Solution suggested by \color{#3D99F6}{\text{Solution suggested by }} Shyamdhu Mukherjee :

cos θ = 3 sin θ = 1 3 2 = i 2 2 \cos \theta = 3 \quad \Rightarrow \sin \theta = \sqrt{1-3^2} = i2\sqrt{2} .

Therefore,

e i θ = cos θ + i sin θ = 3 ± i ( i 2 2 ) = 3 ± 2 2 i θ = ln ( 3 ± 2 2 ) θ 2 = ln 2 ( 3 ± 2 2 ) = 3.107 \begin{aligned} e^{i \theta} & = \cos \theta + i \sin \theta \\ & = 3 \pm i (i 2\sqrt{2}) \\ & = 3 \pm 2\sqrt{2} \\ \Rightarrow i \theta & = \ln (3 \pm 2\sqrt{2}) \\ \theta^2 & = \ln^2 (3 \pm 2\sqrt{2}) \\ & = \boxed{-3.107} \end{aligned}

nice solution(+1). how about directly computing a r c c o s h 2 ( 3 ) -arccosh^2(3) saves time...

Aareyan Manzoor - 5 years, 5 months ago

Log in to reply

Yes, same result, but I wasn't sure. Also want to show it from first first principle.

Chew-Seong Cheong - 5 years, 5 months ago

yes that's it , it's a really nice solution

Benjamin ononogbu - 5 years, 5 months ago

We could get the value of sin(theta) and then forming the complex e^itheta we get a real and then evaluating the log we get the answer.

Shyambhu Mukherjee - 5 years, 5 months ago

Log in to reply

Yes. It should work too.

Chew-Seong Cheong - 5 years, 5 months ago

I have added the solution.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

Thanks for putting the solution in.

Shyambhu Mukherjee - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...