This is not what you think!

Algebra Level 4

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + + 2016 2014 ! + 2015 ! + 2016 ! \large\dfrac{3}{1!+2!+3!} + \dfrac{4}{2!+3!+4!} +\cdots+ \dfrac{2016}{2014!+2015!+2016!}

If the above expression can be represented as 1 k ! 1 ( k + a ) ! , \dfrac{1}{k!} - \dfrac{1}{(k+a)!} \; , then find a k \dfrac{a}{k} .

Notation :

! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 1007.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arsan Safeen
Apr 3, 2016

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + . . . . . . . . . . + 2016 2014 ! + 2015 ! + 2015 ! \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + .......... + \frac{2016}{2014!+2015!+2015!}

k ( k 2 ) ! + ( k 1 ) ! + k ! \frac{k}{(k-2)!+(k-1)!+k!}

= k ( k 2 ) ! ( 1 + ( k 1 ) + k ( k 1 ) ) =\frac{k}{(k-2)!(1+(k-1)+k(k-1))}

= k ( k 2 ) ! ( k 2 ) =\frac{k}{(k-2)!(k^{2})}

= 1 ( k 2 ) ! ( k ) =\frac{1}{(k-2)!(k)}

= k 1 k ! =\frac{k-1}{k!}

= 1 ( k 2 ) ! ( k ) =\frac{1}{(k-2)!(k)}

= 1 ( k 1 ) ! 1 k ! =\frac{1}{(k-1)!} - \frac{1}{k!} ,then

1 2 ! 1 3 ! + 1 3 ! 1 4 ! + 1 4 ! 1 5 ! + . . . . . . . . . . + 1 2015 ! 1 2016 ! \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{4!} - \frac{1}{5!} + .......... + \frac{1}{2015!} - \frac{1}{2016!}

= 1 2 ! 1 2016 ! =\frac{1}{2!} - \frac{1}{2016!}

= 1 2 ! 1 ( 2014 + 2 ) ! =\frac{1}{2!} - \frac{1}{(2014+2)!}

then, a = 2014 a = 2014 and k = 2 k = 2

Therefore, a k = 2014 2 = 1007 \frac{a}{k} = \frac{2014}{2} = 1007

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...