Given that a , b and c are non-zero numbers satisfying a 1 + b 1 + c 1 = 0 , calculate
a 2 b c + b 2 a c + c 2 a b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
a 1 + b 1 + c 1 = 0 ⟺ c 1 = − ( a 1 + b 1 ) ⟺ c 3 1 = − ( a 1 + b 1 ) 3 ⟺ c 3 1 = − ( a 3 1 + a 2 b 3 + a b 2 3 + b 3 1 ) = − a 3 1 − b 3 1 − ( a 2 b 3 + a b 2 3 ) ( ∗ ) On the other hand, a 2 b 3 + a b 2 3 = a 1 × a b 3 + b 1 × a b 3 = a b 3 ( a 1 + b 1 ) = a b 3 × − c 1 = − a b c 3 ( ∗ ) ⟺ c 3 1 = − a 3 1 − b 3 1 + a b c 3 ⟺ a 3 1 + b 3 1 + c 3 1 = a b c 3 So a 2 b c + b 2 a c + c 2 a b = a × a 2 a × b c + b × b 2 b × a c + c × c 2 c × a b = a 3 a b c + b 3 a b c + c 3 a b c = a b c ( a 1 + b 1 + c 1 ) = a b c × a b c 3 = 3
a 2 b c + b 2 a c + c 2 a b
We know that:
a 1 + b 1 + c 1 = 0 a b c b c + a c + a b = 0 a b + a c + b c = 0
This implies that:
b c = − a b − a c a c = − a b − b c a b = − a c − b c
Substitute these in:
a 2 b c + b 2 a c + c 2 a b = a 2 − a b − a c + b 2 − a b − b c + c 2 − a c − b c = − ( a b + c + b a + c + c a + b ) = − ( a b c b c ( b + c ) + a c ( a + c ) + a b ( a + b ) ) = − ( a b c b 2 c + b c 2 + a 2 c + a c 2 + a 2 b + a b 2 ) = − ( a b c a 2 b + a 2 c + a b 2 + b 2 c + b c 2 + a c 2 ) = − ( a b c a ( a b + a c ) + b ( a b + b c ) + c ( b c + a c ) )
Again, from the equation a b + a c + b c = 0 , we know that:
a b + a c = − b c a b + b c = − a c a c + b c = − a b
Substitute again:
− ( a b c a ( a b + a c ) + b ( a b + b c ) + c ( b c + a c ) ) = − ( a b c a ( − b c ) + b ( − a c ) + c ( − a b ) ) = a b c 3 a b c = 3
Substitute ( a , b , c ) = ( 1 , ω , ω 2 ) where ω denotes complex cube root of unity and then using ω 3 = 1 the expression simplifies to 3 .
Ideally, a solution should present the general case, instead of a specific scenario.
There are 2 ways to prove this: 1. We will use a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) or a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) + 3 a b c (1) (try to prove it yourself, or there is a proof at the end of this solution). a 2 b c + b 2 a c + c 2 a b = a 3 a b c + b 3 a b c + c 3 a b c = a b c ( a 3 1 + b 3 1 + c 3 1 ) = a b c [ ( a 1 + b 1 + c 1 ) ( a 2 1 + b 2 1 + c 2 1 − a b 1 − b c 1 − c a 1 ) + 3 ⋅ a 1 ⋅ b 1 ⋅ c 1 ] = a b c ⋅ a b c 3 = 3 2. From a 1 + b 1 + c 1 = 0 , we got that: a 1 + b 1 = − c 1 ( a 1 + b 1 ) 3 = − c 3 1 Now, we have another fact that a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) , you can prove this by expanding ( a + b ) 3 . Thus: a 2 b c + b 2 a c + c 2 a b = a b c ( a 3 1 + b 3 1 + c 3 1 ) = a b c [ ( a 1 + b 1 ) 3 − 3 a b 1 ( a 1 + b 1 ) + c 3 1 ] = a b c [ − c 3 1 − a b 3 ( − c 1 ) + c 3 1 ] = a b c ⋅ a b c 3 = 3 Proof of (1): You may prove that a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) . Using this, we have: a 3 + b 3 + c 3 − 3 a b c = ( a + b ) 3 − 3 a b ( a + b ) + c 3 − 3 a b c = ( a + b ) 3 + c 3 − 3 a b ( a + b ) − 3 a b c = ( a + b + c ) [ ( a + b ) 2 − ( a + b ) c + c 2 ] − 3 a b ( a + b + c ) = ( a + b + c ) ( a 2 + 2 a b + b 2 − a c − b c + c 3 − 3 a b ) = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a )
Let a, b and c be the roots of x 3 − S x 2 − a b c = 0 , the coefficient of x is zero (the sum of reciprocals being 0). Dividing this by x 3 we get the equation, 1 − x S − x 3 a b c = 0 . As the expression to be evaluated can be re-written as a b c ( a 3 1 + b 3 1 + c 3 1 ) , after putting x=a, then x=b, then x=c in the equation succesively and adding them gives 3 − S ( a 1 + b 1 + c 1 ) − a b c ( a 3 1 + b 3 1 + c 3 1 ) = 0 , where multiplier of S is 0 (given), we find the value of the required expression as 3. ANSWER
Problem Loading...
Note Loading...
Set Loading...
a 1 + b 1 + c 1 = 0
( a + b + c ) ( a 1 + b 1 + c 1 ) = 0
b a + a b + c a + a c + c b + b c = − 3 ⋯ ( 1 )
a 1 + b 1 + c 1 = 0
a 1 = − b 1 − c 1 ⋯ ( 2 )
a 2 b c + b 2 a c + c 2 a b
= ( − b 1 − c 1 ) 2 ( b c ) + ( − a 1 − c 1 ) 2 ( a c ) + ( − a 1 − b 1 ) 2 ( a b ) ) from ( 2 )
= 6 + b a + a b + c a + a c + c b + b c
= 6 − 3 from ( 1 )
= 3