This is surely harder than ever !!!!!!

Algebra Level 5

The function f ( x ) f(x) is such that f ( x ) + f ( x 1 ) = x 2 f(x)+f(x-1)= x^{2} If f ( 19 ) f(19) = 94 94 . Then find the value of

f ( 19 ) + f ( 20 ) + f ( 21 ) + + f ( 101 ) f(19) + f(20) + f(21) + \ldots + f(101)


The answer is 175615.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Sujoy Roy
Sep 8, 2014

Given expression = f ( 19 ) + x = 20 101 f ( x ) f(19)+\sum_{x=20}^{101}f(x)

= f ( 19 ) + x = 10 50 [ f ( 2 x ) + f ( 2 x + 1 ) ] =f(19)+\sum_{x=10}^{50}[f(2x)+f(2x+1)]

= 94 + x = 10 50 ( 2 x + 1 ) 2 =94+\sum_{x=10}^{50}(2x+1)^2

= 94 + x = 1 50 ( 2 x + 1 ) 2 x = 1 9 ( 2 x + 1 ) 2 =94+\sum_{x=1}^{50}(2x+1)^2-\sum_{x=1}^{9}(2x+1)^2

= 175615 =175615

Best Solution

Ronak Agarwal - 6 years, 9 months ago

I used the method of Sujoy Roy, but I came up with the following expression from scratch:

x = 0 n ( 2 x + 1 ) 2 = ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) 3 \sum _{x=0} ^{n} {(2x+1)^2} = \dfrac {(n+1)(2n+1)(2n+3)} {3}

Obviously, the value of x = 0 n ( 2 x + 1 ) 2 \sum _{x=0} ^{n} {(2x+1)^2} can be obtained using computer.

The expression:

S = f ( 19 ) + f ( 20 ) + f ( 21 ) + . . . + f ( 101 ) S = f(19)+f(20)+f(21)+...+f(101)

= f ( 19 ) + ( f ( 20 ) + f ( 21 ) ) + ( f ( 22 ) + f ( 23 ) ) + . . . + ( f ( 100 ) + f ( 101 ) ) \quad = f(19)+(f(20)+f(21)) +(f(22)+f(23)) +...+(f(100)+f(101))

= 94 + 2 1 2 + 2 3 2 + . . . + 10 1 2 \quad = 94 + 21^2 + 23^2 + ... + 101^2

= 94 + x = 0 50 ( 2 x + 1 ) 2 x = 0 9 ( 2 x + 1 ) 2 \quad = 94 + \sum _{x=0} ^{50} {(2x+1)^2} - \sum _{x=0} ^{9} {(2x+1)^2}

= 94 + ( 51 ) ( 101 ) ( 103 ) 3 ( 10 ) ( 19 ) ( 21 ) 3 \quad = 94 + \dfrac {(51)(101)(103)} {3} - \dfrac {(10)(19)(21)} {3}

= 94 + 176851 1330 = 175615 \quad = 94 + 176851 - 1330 = \boxed{175615}

There is an error in your solution. There should be a '+' sign in the summation. i.e. 2x + 1

Alessandro Bellia - 4 years, 7 months ago

Log in to reply

Thanks, I have changed it.

Chew-Seong Cheong - 4 years, 7 months ago

In chew-seong cheong's solution, sum of squares of first n odd natural numbers can be calculated as : Sum (odd) = Sum (n) - Sum (even)

1^2 + 3^2 + 5^2 + 7^2 + ... + (2n+1)^2 = 1^2 + 2^2 + 3^2 + 4^2...+ (n-1)^2 + n^2 - [2^2 + 4^2 + 6^2 + 8^2 + ... + (2k)^2] = (n)(n+1)(2n+1)/6 - 2^2*[ 1 + 2^2 + 3^2 + 4^2 + ... + k^2] {Since we need to find the sum till (n-1)^2, 2k=n-1, k=(n-1)/2} = (n)(n+1)(2n+1)/6 - 4[(n-1)(n)(n+1)/6] { putting k = (n-1)/2 } = n(n+1)(n+2)/6 {On simplification}

INFO WEB - 9 months, 2 weeks ago

What I did was really rushy.

Take the alternating sum

( f ( 19 ) + f ( 20 ) ) ( f ( 20 ) + f ( 21 ) ) + . . . ( f ( 100 ) + f ( 101 ) ) = f ( 19 ) f ( 101 ) (f(19) + f(20)) - (f(20)+f(21))+ ... - (f(100)+f(101)) = f(19) - f(101)

2 0 2 2 1 2 + . . . + 10 0 2 10 1 2 = 94 f ( 101 ) 20^{2} - 21^{2} + ... + 100^{2} - 101^{2} = 94 - f(101)

Solve for f ( 101 ) = 5055 f(101) = 5055

Take all the sum

f ( 19 ) + x = 20 101 ( f ( x ) + f ( x 1 ) ) + f ( 101 ) = 94 + x = 20 101 x 2 + 5055 = 351230 f(19) + \sum_{x=20}^{101} (f(x)+f(x-1)) + f(101) = 94 + \sum_{x=20}^{101} x^{2} + 5055 = 351230

Since all the f ( x ) f(x) from x = 19 x=19 to 101 101 are repeated twice, so we get 351230 2 = 175615 \displaystyle \frac{351230}{2} = \boxed{175615}

Why not pair f ( 20 ) f(20) with f ( 21 ) f(21) ,....., f ( 100 f(100 with f ( 101 f(101 and then finally add f ( 19 ) = 94 f(19)=94 ?

Rahul Saha - 6 years, 8 months ago

Log in to reply

I was dum dum like freshly born tadpole. =w=

Samuraiwarm Tsunayoshi - 6 years, 6 months ago
Bill Bell
Jun 30, 2015

f is defined recursively.

I haven't taken the trouble to memoise the function for efficiency.

Parth Lohomi
Nov 24, 2017

C-Code

#include<stdio.h> \text{\#include<stdio.h>}

int f(int x)

{

if(x==19)

return(94);

return (x*x-f(x-1));

}

int main()

{

int x,sum=0;

for(x=19;x<=101;x++)

sum+=f(x);

printf("%d",sum);

return 0;

}

Shashank Goel
Jul 9, 2016

f(x) can be x(x+1)/2 +96(-1)^x Hope You can do the sum!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...