This is too easy and I know it....

Algebra Level 2

1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 98 + 99 + 1 99 + 100 = ? \dfrac{1}{\sqrt{1} + \sqrt{2}} + \dfrac{1}{\sqrt{2} + \sqrt{3}} + \dfrac{1}{\sqrt{3} + \sqrt{4}} + \cdots + \dfrac{1}{\sqrt{98} + \sqrt{99}} + \dfrac{1}{\sqrt{99} + \sqrt{100}} = \ ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 27, 2018

S = 1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 98 + 99 + 1 99 + 100 = 2 1 ( 2 + 1 ) ( 2 1 ) + 3 2 ( 3 + 2 ) ( 3 2 ) + 4 3 ( 4 + 3 ) ( 4 3 ) + + 99 98 ( 99 + 98 ) ( 99 98 ) + 100 99 ( 100 + 99 ) ( 100 99 ) = 2 1 2 1 + 3 2 3 2 + 4 3 4 3 + + 99 98 99 98 + 100 99 100 99 = 2 1 + 3 2 + 4 3 + + 99 98 + 100 99 = 2 1 + 3 2 + 4 3 + + 99 98 + 100 99 = 100 1 = 10 1 = 9 \begin{aligned} S & = \frac 1{\sqrt 1+\sqrt 2} + \frac 1{\sqrt 2+\sqrt 3}+ \frac 1{\sqrt 3+\sqrt 4} + \cdots + \frac 1{\sqrt{98} + \sqrt{99}} + \frac 1{\sqrt{99} + \sqrt{100}} \\ & = \small \frac {\sqrt 2-\sqrt 1}{(\sqrt 2+\sqrt 1)(\sqrt 2-\sqrt 1)} + \frac {\sqrt 3-\sqrt 2}{(\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)} + \frac {\sqrt 4-\sqrt 3}{(\sqrt 4+\sqrt 3)(\sqrt 4-\sqrt 3)} + \cdots + \frac {\sqrt {99}-\sqrt {98}}{(\sqrt {99}+\sqrt {98})(\sqrt {99}-\sqrt {98})} + \frac {\sqrt {100}-\sqrt {99}}{(\sqrt {100}+\sqrt {99})(\sqrt {100}-\sqrt {99})} \\ & = \frac {\sqrt 2-\sqrt 1}{2-1} + \frac {\sqrt 3-\sqrt 2}{3-2} + \frac {\sqrt 4-\sqrt 3}{4-3} + \cdots + \frac {\sqrt {99}-\sqrt {98}}{99-98} + \frac {\sqrt {100}-\sqrt {99}}{100-99} \\ & = \sqrt 2-\sqrt 1 + \sqrt 3-\sqrt 2+\sqrt 4-\sqrt 3 + \cdots + \sqrt {99}-\sqrt {98} + \sqrt {100}-\sqrt {99} \\ & = \cancel{{\color{#3D99F6}\sqrt 2}} -\sqrt 1 + \cancel{{\color{#D61F06}\sqrt 3}}-\cancel{{\color{#3D99F6}\sqrt 2}} + \cancel{{\color{#3D99F6}\sqrt 4}}- \cancel {{\color{#D61F06} \sqrt 3}} + \cdots + \cancel{\color{#D61F06}\sqrt {99}}-\cancel{\color{#3D99F6}\sqrt {98}} + \sqrt {100}-\cancel{\color{#D61F06}\sqrt {99}} \\ & = \sqrt{100} - \sqrt 1 = 10 - 1 = \boxed 9 \end{aligned}

Tom Engelsman
Oct 26, 2018

We have:

Σ k = 1 99 1 k + 1 + k = Σ k = 1 99 1 k + 1 + k k + 1 k k + 1 k \Sigma_{k=1}^{99} \frac{1}{\sqrt{k+1} + \sqrt{k}} = \Sigma_{k=1}^{99} \frac{1}{\sqrt{k+1} + \sqrt{k}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} ;

or Σ k = 1 99 k + 1 k ( k + 1 ) k \Sigma_{k=1}^{99} \frac{\sqrt{k+1} - \sqrt{k}}{(k+1) - k} ;

or Σ k = 1 99 k + 1 k \Sigma_{k=1}^{99} \sqrt{k+1} - \sqrt{k} .

This is of course a telescoping series, which sums to 100 1 = 9 . \sqrt{100} - \sqrt{1} = \boxed{9}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...